Solution (#102) If we take set $w_2 = z_2 - z_1$ and $w_3 = z_3 - z_1$ then the equation

$$\frac{z_2 - z_1}{z_3 - z_1} = \frac{z_1 - z_3}{z_2 - z_3}$$
$$\frac{w_2}{w_3} = \frac{-w_3}{w_2 - w_3},$$
$$\implies (w_2)^2 - w_2 w_3 + w_3^2 = 0,$$
$$\implies \left(\frac{w_3}{w_2}\right)^2 - \left(\frac{w_3}{w_2}\right) + 1 = 0,$$
$$\implies w_3 = \operatorname{cis} (\pm \pi/3) w_2, \qquad \text{[solving this quadratic]}.$$

In either case, $w_3 = \operatorname{cis}(\pm \pi/3) w_2$ means that the $w_3 = z_3 - z_1 = \overrightarrow{z_1 z_3}$ is of equal length to $w_2 = z_2 - z_1 = \overrightarrow{z_1 z_2}$ and lies at $\pi/3$ from it (anti-clockwise). This means that $\Delta z_1 z_2 z_3$ is an equilateral triangle.