
Solution (#140) Let a, b, c be complex numbers representing the vertices of the triangle ABC. From Example 1.50
we know that d, e, f (complex numbers representing D,E,F ) satisfy

d+ ωb+ ω2a = 0, e+ ωc+ ω2b = 0, f + ωa+ ω2c = 0

where ω = cis (2π/3). The centroid of ADB is (a+ d+ b) /3 (see #136) with similar expressions for the centroid of
BEC and CFA. Finally note
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= 0 [as ω3 = 1].


