**Solution** (#149) Let A denote the centre of  $C_1$  and B denote the centre of  $C_2$  as in the diagram below.



As  $C_1$  and  $C_2$  are tangential at Q then AQB is a line that makes equal angles with the parallel lines XBR and PAY. So QBR and QAP are equal angles, in isosceles triangles, and hence RQB and PQA are also equal angles. This means that P, Q, R are collinear.

If we now look at the second diagram and take the origin to be the intersection of  $C_3$  and  $C_4$  we see, by #148, that  $z \mapsto 1/z$  transforms  $C_3$  and  $C_4$  transform into two lines  $L_2$  and  $L_1$ . As  $C_3$  and  $C_4$  meet only in one point it follows that  $L_1$  and  $L_2$  are parallel. We also see from #148 that  $C_1$  and  $C_2$  transform into two circles. The tangencies that we had in the second diagram mean that  $L_1$  is tangential to  $C_1$  which is tangential to  $C_2$  which is tangential to  $L_2$ . That is, we have a version of the first diagram. The points P, Q, R respectively correspond to the other tangencies  $C_1$  meets  $C_4$ ,  $C_1$  meets  $C_2$  and  $C_2$  meets  $C_3$  in the second diagram. As P, Q, R lie on a line that does not go through the origin of the first diagram, then the line PQR resulted from transforming a circle in the second diagram that goes through its origin. As the origin of the second diagram is where  $C_3$  meets  $C_4$  then all four tangential points lie on this circle.

**Remark:** There are some subtleties to this result. It is important in the second diagram that the circles are external to one another. The result is clearly not generally true if three of the circles lie inside the fourth, for example as in the diagram below where the tangencies are collinear rather than concyclic.



If one transforms the first diagram under the map  $z \mapsto 1/z$  then the resulting diagram depends on the choice of origin. If the origin is not on any of  $L_1, L_2, C_1, C_2$  then four circles will result. If the origin is taken to be between the parallel lines and in the regions above or below  $C_1$  and  $C_2$  then an arrangement much like the second diagram in the exercise results with four circles externally tangential to one another. If instead one chooses the origin to be inside  $C_1$  or  $C_2$ , to the left of  $L_1$  or to the right of  $L_2$ , then we would have an arrangement where three circles now sat inside a fourth. If the origin was taken to be on the line PQR then the four tangencies would actually be collinear, but otherwise the tangencies would still be concyclic.

A more general version of the result would be to say that if four circles  $C_1, C_2, C_3, C_4$  are tangential as described (whether or not externally arranged) then the tangencies lie on a circline.