Solution (#178) Let $f(x) = e^x - 2$.

From the sketch above we can see that the equation $e^x - 2 = x$ has two roots, one in the range $-2 < \alpha < -1$ and the other in the range $1 < \beta < 2$. To see this more rigorously we can set $g(x) = e^x - 2 - x$ and note that

$$g(-2) = e^{-2} - 2 + 2 > 0 > e^{-1} - 2 + 1 = g(-1);$$

$$g(1) = e - 2 - 1 < 0 < e^{2} - 2 - 2 = g(2).$$

As g is continuous then there is a root in each interval. Further as $g'(x) = e^x - 1$ then g is increasing for x > 0 and decreasing for x < 0. Hence α and β are the only two roots of g. Also

$$e^{-2} - 1 = g'(-2) < g'(\alpha) < g'(-1) = e^{-1} - 1$$
 showing that $|g'(\alpha)| < 1$, and α is attracting,

and

 $e-1 = g'(1) < g'(\beta)$ showing that $|g'(\beta)| > 1$, and β is repelling.

Using cobwebbing sketches, we can see, for the various possible values of x_0 , that:

 x_n converges to α in an increasing fashion when $x_0 < \alpha$;

 $x_n = \alpha$ for all *n* when $x_0 = \alpha$;

 x_n converges to α in a decreasing fashion when $\alpha < x_0 < \beta$;

 $x_n = \beta$ for all *n* when $x_0 = \beta$;

 x_n increases in an unbounded fashion when $x_0 > \beta$, where $x_{n+1} = f(x_n)$.