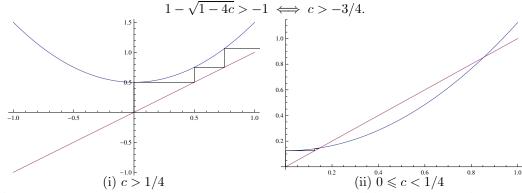
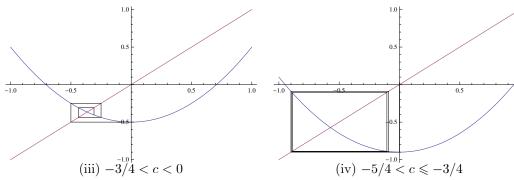
Solution (#182) General comments: Let c be a real number. The equation $z^2 + c = z$ has real roots $\alpha = (1 - \sqrt{1 - 4c})/2, \qquad \beta = (1 + \sqrt{1 - 4c})/2,$

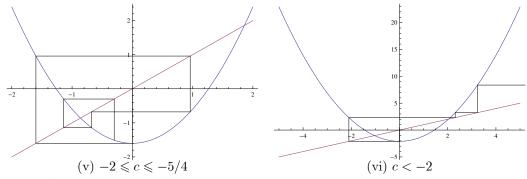
for
$$c \leq 1/4$$
 and are distinct when $c < 1/4$. Note that β is always repelling and that α is attracting when



(i) For c > 1/4 there are no fixed points and z_n increases without bound. (ii) For $0 \le c < 1/4$ then the fixed points α, β lie between 0 and 1 with α being attractive. z_n converges in an increasing fashion to α .



(iii) For -3/4 < c < 0 then α is negative and attracting, though as $f'(\alpha) = 2\alpha < 0$ we note that z_n converges to α is an oscillatory fashion. (iv) For $-5/4 < c \leq -3/4$ then we see z_n oscillating close to two values (an attracting period 2 orbit – see #186). In particular, when c = -1, then $(z_n) = (0, -1, 0, -1, 0, -1, ...)$.



(v) For $-2 \leq c \leq -5/4$ the behaviour of z_n becomes increasingly erratic. For some values showing chaotic behaviour (e.g. as sketched above) whilst for other values it can be close to periodic. However it does remain the case that z_n remains bounded. We have for each n that $-\beta \leq z_n \leq \beta$. The reason for this is that the map $f(z) = z^2 + c$ maps this interval back into itself. The largest value f takes on this interval is $f(\beta) = \beta$ and the smallest is c. However, $c \geq -\beta$ when

$$-c \leqslant \beta \iff -2c \leqslant 1 + \sqrt{1 - 4c} \iff 4c^2 + 4c + 1 \leqslant 1 - 4c \iff c(c+2) \leqslant 0$$

which is true for $-2 \leq c \leq 0$, in which range c is. (vi) For c < -2, in the sketch above z_n eventually increases in an unbounded fashion. This is generally the case as seen in #174(iv).

We have exhaustively considered cases covering all possible real numbers, and we see that $z_n(c)$ remains bounded (i.e. c lies in the Mandelbrot set) for $-2 \leq c \leq 1/4$.