Solution (#198) Let f be a Mobius transformation which maps the unit circle |z] = 1 to the real axis and the real
axis to the imaginary axis.
The intersections of the unit circle |z| = 1 and the real axis are 1 and —1; the intersections of the images (the real
and imaginary axis) are 0 and oo. It follows that (i) f (1) =0 and f(—1) = oo or (ii) f (1) = o0 and f(—1) =0.
Suppose we are in the first case. It then follows that
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where a is a non-zero complex number. As i lies on the unit circle then
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is real. It follows that we can write a = iA where A is non-zero and real. On the other hand, if
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and |z| =1, so that zZ = 1, then
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and so f (z) is real, whilst if z is real then

and so f (z) is imaginary.
Suppose we are in the second case. It then follows that
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where b is a non-zero complex number. As i lies on the unit circle then
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is real. It follows that we can write b = iu where p is non-zero and real. On the other hand, if
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and |z| =1, so that zZ = 1, then
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and so f (z) is real, whilst if z is real then
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and so f (z) is imaginary.



