Solution (#207) Let f(z) = (az + b) / (cz + d) be a Möbius transformation, not equal to the identity.

Note that f fixes ∞ if and only if c=0 and that any finite fixed points z satisfy

$$cz^{2} + (d-a)z - b = 0. (8.25)$$

If c = 0 then ∞ is fixed and (8.25) can at most have one further solution.

If $c \neq 0$ then ∞ is not fixed and (8.25) can have one or two solutions.

- (i) If ∞ is fixed then c = 0. We see b/(d-a) is a further fixed point unless a = d. Hence the map f in this case is $z \mapsto z + b/d$ which is a translation.
- (ii) Again if ∞ is fixed then c = 0. If 0 is also fixed then b = 0. Hence the map f in this case is $z \mapsto (a/c)z$ which is a dilation.
- (iii) Suppose now that f fixes precisely one point, call it α . Let g be a Möbius transformation such that $g(\infty) = \alpha$. Then $g^{-1}fg$ is also a Möbius transformation by #192 (iii); further

$$g^{-1}fg(z) = z$$

$$\iff f(g(z)) = g(z)$$

$$\iff g(z) = \alpha$$

$$\iff z = \infty.$$

So $g^{-1}fg$ is a Möbius transformation fixing only ∞ and so is a translation.

(iv) Suppose now that f fixes two points, α and β . Let g be a Möbius transformation such that $g(\infty) = \alpha$ and $g(\beta) = 0$. Then $g^{-1}fg$ is also a Möbius transformation by #192 (iii); further

$$g^{-1}fg(z) = z$$

$$\iff f(g(z)) = g(z)$$

$$\iff g(z) = \alpha \text{ or } \beta$$

$$\iff z = \infty \text{ or } 0.$$

So $g^{-1}fg$ is a Möbius transformation fixing ∞ and 0 and so is a dilation.