
Solution (#220) As we are to measure distances in H in such a way as to make g an isometry, and likewise g−1 an
isometry, then the lines in D will map under g−1 to the lines in H. Now

g (z) =
z − i

z + i
and

g−1 (z) =
i (z + 1)

1− z
.

As g−1 is a Möbius transformation then it is conformal and maps circlines to circlines. Note also that g−1 maps the
unit circle (the boundary of D) to the real axis (the boundary of H). Now the lines in D are the (arcs of) circlines
which intersect the unit circle at right angles. So the lines in H are the (arcs of) circlines which intersect the real axis
— i.e. they are either half-lines perpendicular to the real axis or semi-circles which cut the real axis in right angles.

(ii) If the map g from D to H is to be an isometry then, for p, q in H, we have
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as |1− q| = |1− q̄| . Then, simplifying,
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As
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then we also have
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