Solution (#220) As we are to measure distances in H in such a way as to make g an isometry, and likewise g~! an

isometry, then the lines in D will map under ¢! to the lines in H. Now
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As g~ is a Mobius transformation then it is conformal and maps circlines to circlines. Note also that ¢g—! maps the

unit circle (the boundary of D) to the real axis (the boundary of H). Now the lines in D are the (arcs of) circlines

which intersect the unit circle at right angles. So the lines in H are the (arcs of) circlines which intersect the real axis

— i.e. they are either half-lines perpendicular to the real axis or semi-circles which cut the real axis in right angles.
(ii) If the map g from D to H is to be an isometry then, for p,q in H, we have
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as |1 —¢q| = |1 — g| . Then, simplifying,
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then we also have
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