Solution (#223) Taking the hyperbolic triangle described in #221, we have from the hyperbolic sine rule that
p = sinh bsinh csin A = sinh asinh bsin C = sinh asinh ¢sin B.
To avoid notational messes we shall again write a = cosha, S = coshb, v = cosh ¢. From the cosine rule for cos A we
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Making similar use of the rules for cos /1, cos B , COS C’, we have that
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However we showed in the solution of # 222 that p? = sinh? bsinh? ¢ sin? A= 2037 — a? — % — 42 + 1. Thus
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as required. As cosha > 1 it follows that
cos A > sin Bsin C' — cos Bcos C' = — cos(B 4 C) = cos <7r -B- C’) .

As cosf is decreasing for 0 < 6 < 7 we have that

A<r-B-C

and we have A+ B+ C < 7.



