Solution (\#1607) Consider the DE

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x+y-1}{2 x+2 y-1}
$$

If we substitute $x=X+a, y=Y+b$ then the RHS becomes

$$
\frac{X+Y+a+b-1}{2 X+2 Y+2 a+2 b-1}
$$

For this function to be homogeneous polar we need that

$$
a+b=1 \quad \text { and } \quad 2 a+2 b=1
$$

which clearly are contradictory equations.
Alternatively if we set $z=x+y$ then the DE becomes

$$
\frac{\mathrm{d} z}{\mathrm{~d} x}-1=\frac{z-1}{2 z-1} .
$$

We can rearrange this into a separable DE

$$
\frac{\mathrm{d} z}{\mathrm{~d} x}=\frac{3 z-2}{2 z-1}
$$

separating the variables and integrating we find

$$
x+c=\int \mathrm{d} x=\int \frac{2 z-1}{3 z-2} \mathrm{~d} z=\int \frac{2}{3}+\frac{1 / 3}{3 z-2} \mathrm{~d} z=\frac{2}{3} z+\frac{1}{9} \ln |3 z-2|
$$

where c is a constant. Recalling that $z=x+y$, we find

$$
x+c=\frac{2}{3} x+\frac{2}{3} y+\frac{1}{9} \ln |3 x+3 y-2|
$$

which rearranges to

$$
\ln |3 x+3 y-2|+6 y-3 x=\text { const.. }
$$

