Solution (#1609) A particle P moves in the xy-plane. Its co-ordinates z(t) and y(t) satisfy the equations
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and at time ¢ = 0 the particle is at (1,0). By the chain rule
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If we set y (x) = av (z) so that ¢y = v + zv’ then we see

dv 14w
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which rearranges to
dv 1402
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which is a separable differential equation. Then
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and integrating we see 1
tan™t v — B In(1 4 v?) + const. = Inx

Initially x = 1, y = 0 and v = 0 so that the above constant equals 0. The particle therefore travels on the curve
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tan~? (E) = Inz+-In 1+i
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= 5 ln(x2 -+ y2)
Now if we change to polar co-ordinates (x = rcosf, y = rsinf) our curve’s equation becomes

1
0:§1nr2:lnr = r=¢.

Note that the equation y/(t) = z(t) + y(¢) becomes

%( %sin ) = e?(cos @ + sin 6)
and via the chain rule we then have
e?(cos @ +sin0)#' (t) = €’ (cos f + sin 0)
so that 6'(t) = 1. At § =0 when ¢ = 0 then § = ¢ and we have
(z(t),y(t)) = (' cost, e’ sint).
A sketch of the curve for 0 < ¢t < 27 is given below.
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