
Solution (#1609) A particle P moves in the xy-plane. Its co-ordinates x(t) and y(t) satisfy the equations
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and at time t = 0 the particle is at (1, 0). By the chain rule
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If we set y (x) = xv (x) so that y′ = v + xv′ then we see
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which is a separable differential equation. Then
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and integrating we see
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Initially x = 1, y = 0 and v = 0 so that the above constant equals 0. The particle therefore travels on the curve
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Now if we change to polar co-ordinates (x = r cos θ, y = r sin θ) our curve’s equation becomes
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1
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ln r2 = ln r =⇒ r = eθ.

Note that the equation y′(t) = x(t) + y(t) becomes

d
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(eθ sin θ) = eθ(cos θ + sin θ)

and via the chain rule we then have

eθ(cos θ + sin θ)θ′(t) = eθ(cos θ + sin θ)

so that θ′(t) = 1. At θ = 0 when t = 0 then θ = t and we have

(x(t), y(t)) = (et cos t, et sin t).

A sketch of the curve for 0 � t � 2π is given below.


