**Solution** (#1653) Note that the general solution of y'' + y = 0 is  $y = A \cos x + B \sin x$ .

•  $y'' + y = \sin^2 x$ . If we write

$$\sin^2 x = \frac{1}{2}(1 - \cos 2x),$$

then it seems reasonable to seek a particular solution of the form

$$y = A\cos 2x + B\sin 2x + C.$$

Substituting this y into the given DE we obtain

$$(A-4A)\cos 2x + (B-4B)\sin 2x + C = \frac{1}{2} - \frac{1}{2}\cos 2x.$$

Comparing coefficients we see that A = 1/6, B = 0 and C = 1/2. Hence a particular solution is

$$y = \frac{1}{6}\cos 2x + \frac{1}{2}.$$

Note that we could equally have sought a particular solution of the form

$$y = A\cos^2 x + B\sin x \cos x + C\sin^2 x.$$

•  $y'' + y = \sin x$ . Note that  $\sin x$  is part of the complementary function. Consequently we will seek a particular solution of the form

$$y = Ax\cos x + Bx\sin x.$$

We then have

$$y' = A(\cos x - x \sin x) + B(\sin x + x \cos x);$$
  $y'' = A(-2\sin x - x \cos x) + B(2\cos x - x \sin x).$ 

Substituting this y into the given DE we obtain

$$A(-2\sin x - x\cos x) + B(2\cos x - x\sin x) + (Ax\cos x + Bx\sin x) = \sin x,$$

which simplifies to

$$-2A\sin x + 2B\cos x = \sin x.$$

Comparing coefficients we have that A = -1/2 and B = 0 so that a particular solution is

$$y = -\frac{x}{2}\sin x.$$

•  $y'' + y = x \sin 2x$ . We will seek a particular solution of the form

$$y = Ax\sin 2x + Bx\cos 2x + C\sin 2x + D\cos 2x.$$

We then have

$$y' = A(\sin 2x + 2x\cos 2x) + B(\cos 2x - 2x\sin 2x) + 2C\cos 2x - 2D\sin 2x;$$

$$y'' = A(4\cos 2x - 4x\sin 2x) + B(-4\sin 2x - 4x\cos 2x) - 4C\sin 2x - 4D\cos 2x.$$

Substituting this y into the given DE and simplifying we obtain

$$(A-4A)x\sin 2x + (B-4B)x\cos 2x + (C-4B-4C)\sin 2x + (4A+D-4D)\cos 2x = x\sin 2x.$$

Comparing coefficients we have

$$-3A = 1;$$
  $-3B = 0$   $3C - 4B = 0;$   $4A - 3D = 0.$ 

Hence B = C = 0 and A = -1/3, D = -4/9, and a particular solution is

$$y = -\frac{1}{3}x\sin 2x - \frac{4}{9}\cos 2x.$$