Solution (#1655) The complementary function of the DE

$$y'' - 3y' + 2y = f(x)$$

is $y = \alpha e^x + \beta e^{2x}$ where α, β are constants. (i) $f(x) = \sin 2x$ – a particular solution is

$$Y(x) = -\frac{1}{20}\sin 2x + \frac{3}{20}\cos 2x.$$

(ii)
$$f(x) = e^{3x}$$
 – a particular solution is $Y(x) = \frac{1}{2}e^{3x}$.

(iii)
$$f(x) = e^x$$
 – a particular solution is $Y(x) = -xe^x$.

(ii)
$$f(x) = e^{3x}$$
 – a particular solution is $Y(x) = \frac{1}{2}e^{3x}$.
(iii) $f(x) = e^x$ – a particular solution is $Y(x) = -xe^x$.
(iv) $f(x) = xe^{2x}$ – a particular solution is $Y(x) = (\frac{1}{2}x^2 - x)e^{2x}$.
(v) $f(x) = e^x \sin x$ – a particular solution is

$$Y(x) = \frac{1}{2}e^x(\cos x - \sin x).$$

(vi)
$$f(x) = \sin^2 x = (1 - \cos 2x)/2$$
 – a particular solution is

$$\frac{1}{4} + \frac{3}{40}\sin 2x + \frac{1}{40}\cos 2x.$$