Solution (#1659) Consider the following boundary-value problems. (i) $y'' = \pi^2 y$, y(0) = 1, y(1) = -1. The DE has general solution x.

$$y = Ae^{\pi x} + Be^{-\pi x}$$

The boundary conditions then require

$$A + B = 1,$$
 $Ae^{\pi} + Be^{-\pi} = -1$
 $A = \begin{pmatrix} e^{-\pi} + 1 \end{pmatrix} = B = \begin{pmatrix} e^{\pi} + 1 \end{pmatrix}$

and so

$$A = -\left(\frac{e^{-\pi} + 1}{e^{\pi} - e^{-\pi}}\right), \qquad B = \frac{e^{\pi} + 1}{e^{\pi} - e^{-\pi}}.$$

In particular we have a unique solution.

(ii) $y'' = -\pi^2 y$, y(0) = 1, y(1) = -1. The DE has general solution

 $y = A\sin\pi x + B\cos\pi x.$

 $B = 1, \qquad -B = -1.$

The boundary conditions then require

Thus there are infinitely many solutions

by solutions

$$y = A \sin \pi x + \cos \pi x.$$

(iii)
$$y'' = -\pi^2 y$$
, $y(0) = 1$, $y(1) = 0$. The DE has general solution
 $y = A \sin \pi x + B \cos \pi x$.

The boundary conditions then require

$$B = 1, \qquad -B = 0.$$

As these requirements are contradictory there is no solution to this boundary-value problem.