Solution (\#1666) Consider the simultaneous differential equations

$$
f^{\prime}(x)-g^{\prime}(x)-2 f(x)=e^{-2 x} ; \quad 3 f^{\prime}(x)-2 g^{\prime}(x)-g(x)=0 ; \quad f(0)=g(0)=0
$$

From the first equation

$$
f^{\prime}(x)-2 f(x)-e^{-2 x}=g^{\prime}(x)
$$

and so

$$
3 f^{\prime}(x)-2\left(f^{\prime}(x)-2 f(x)-e^{-2 x}\right)-g(x)=0
$$

which rearranges to

$$
\begin{equation*}
g(x)=f^{\prime}(x)+4 f(x)+2 e^{-2 x} . \tag{13.5}
\end{equation*}
$$

Differentiating we get
and so

$$
f^{\prime}(x)-\left(f^{\prime \prime}(x)+4 f^{\prime}(x)-4 e^{-2 x}\right)-2 f(x)=e^{-2 x}
$$

$$
3 e^{-2 x}=f^{\prime \prime}(x)+3 f^{\prime}(x)+2 f(x)
$$

The complementary function has the form $f(x)=A e^{-x}+B e^{-2 x}$ and so we try a particular solution of the form $f(x)=C x e^{-2 x}$. Then

$$
3 e^{-2 x}=C(4 x-4) e^{-2 x}+3 C(-2 x+1) e^{-2 x}+2 C x e^{-2 x}=-C x e^{-2 x}
$$

and we see $C=-3$. So

$$
f(x)=A e^{-x}+B e^{-2 x}-3 x e^{-2 x}
$$

But we also know $f(0)=0$ and from (13.5) $f^{\prime}(0)=g(0)-4 f(0)-2=-2$. So

$$
A+B=0 \quad \text { and } \quad-A-2 B-3=-2
$$

giving $A=1$ and $B=-1$. So

$$
f(x)=e^{-x}-e^{-2 x}-3 x e^{-2 x}
$$

and by (13.5)

$$
\begin{aligned}
g(x) & =\left(-e^{-x}+2 e^{-2 x}-3 e^{-2 x}+6 x e^{-2 x}\right)+4\left(e^{-x}-e^{-2 x}-3 x e^{-2 x}\right)+2 e^{-2 x} \\
& =3 e^{-x}-3 e^{-2 x}-6 x e^{-2 x}
\end{aligned}
$$

