Solution (#1678) The system can be written $$\frac{\mathrm{d}}{\mathrm{d}t} \left(\begin{array}{c} x \\ y \\ z \end{array} \right) = \left(\begin{array}{ccc} 5 & -1 & -1 \\ 1 & 3 & 1 \\ -2 & 2 & 4 \end{array} \right) \left(\begin{array}{c} x \\ y \\ z \end{array} \right).$$ The characteristic polynomial of the above 3×3 matrix is $(4 - \lambda) \left(2 - \lambda \right) \left(6 - \lambda \right)$. The system's general solution is $$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = Ae^{2t} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} + Be^{4t} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + Ce^{6t} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$