Solution (\#1678) The system can be written

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{ccc}
5 & -1 & -1 \\
1 & 3 & 1 \\
-2 & 2 & 4
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

The characteristic polynomial of the above 3×3 matrix is $(4-\lambda)(2-\lambda)(6-\lambda)$. The system's general solution is

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=A e^{2 t}\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)+B e^{4 t}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+C e^{6 t}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)
$$

