Solution (\#1682) The system in (6.63) reads

$$
\phi^{\prime}=(a b / k) \rho, \quad \rho^{\prime}=(-k m / a) \phi .
$$

So

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(k^{2} m \phi^{2}+a^{2} b \rho^{2}\right) & =2 k^{2} m \phi \phi^{\prime}+2 a^{2} b \rho \rho^{\prime} \\
& =2 k^{2} m \phi\left(\frac{a b}{k}\right) \rho+2 a^{2} b \rho\left(-\frac{k m}{a}\right) \phi \\
& =2 k m a b \phi \rho-2 k m a b \phi \rho=0 .
\end{aligned}
$$

It follows that $k^{2} m \phi^{2}+a^{2} b \rho^{2}$ is a constant of the system.
Call this constant K (which is necessarily positive). The curve

$$
k^{2} m \phi^{2}+a^{2} b \rho^{2}=K
$$

is an ellipse in the $\phi \rho$-plane. Recall

$$
F=\phi+\frac{b}{k} \quad \text { and } \quad R=\rho+\frac{m}{a}
$$

and so the (F, R) describes a translation of this ellipse about the equilibrium $(b / k, m / a)$.

