Solution (#1682) The system in (6.63) reads

$$\phi' = (ab/k) \rho, \qquad \rho' = (-km/a) \phi.$$

 So

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(k^2 m \phi^2 + a^2 b \rho^2 \right) = 2k^2 m \phi \phi' + 2a^2 b \rho \rho'$$
$$= 2k^2 m \phi \left(\frac{ab}{k} \right) \rho + 2a^2 b \rho \left(-\frac{km}{a} \right) \phi$$
$$= 2km a b \phi \rho - 2km a b \phi \rho = 0.$$

It follows that $k^2 m \phi^2 + a^2 b \rho^2$ is a constant of the system. Call this constant K (which is necessarily positive). The curve

$$k^2 m \phi^2 + a^2 b \rho^2 = K$$

is an ellipse in the $\phi\rho\text{-plane.}$ Recall

$$F = \phi + \frac{b}{k}$$
 and $R = \rho + \frac{m}{a}$

and so the (F, R) describes a translation of this ellipse about the equilibrium (b/k, m/a).