
Solution (#1688) The only equilibrium is therefore (0, 0). If we linearize the linear system about (0, 0) then we have

x′ = x+ 2y, y′ = −2x− y

We find
x
′′ = −3x, y

′′ = −3y

and thus both x and y have trigonometric solutions which we remain close to the origin for any small perturbation.
In particular (0, 0) is a stable equilibrium.

Finally we note
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is constant as the system moves. Graphs of these curves near the origin approximate to graphs of the form

x2 + xy + y2 = const..

These curves are ellipses as seen in #1130. A sketch of a family of such curves is given below.


