Solution (\#1688) The only equilibrium is therefore $(0,0)$. If we linearize the linear system about $(0,0)$ then we have

$$
x^{\prime}=x+2 y, \quad y^{\prime}=-2 x-y
$$

We find

$$
x^{\prime \prime}=-3 x, \quad y^{\prime \prime}=-3 y
$$

and thus both x and y have trigonometric solutions which we remain close to the origin for any small perturbation. In particular $(0,0)$ is a stable equilibrium.

Finally we note

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left[x^{2}+x y+y^{2}+\frac{1}{8} x^{4}\right] \\
= & 2 x x^{\prime}+x y^{\prime}+x^{\prime} y+2 y y^{\prime}+\frac{1}{2} x^{3} x^{\prime} \\
= & \left(2 x+y+\frac{1}{2} x^{3}\right)(x+2 y)+(x+2 y)\left(-2 x-y-\frac{1}{2} x^{3}\right)=0
\end{aligned}
$$

and so

$$
x^{2}+x y+y^{2}+\frac{1}{8} x^{4}
$$

is constant as the system moves. Graphs of these curves near the origin approximate to graphs of the form

$$
x^{2}+x y+y^{2}=\text { const.. }
$$

These curves are ellipses as seen in $\# 1130$. A sketch of a family of such curves is given below.

