
Solution (#1715) In Example 6.71 we found that

f(x) = x2e−x

is a solution to
x2f ′′(x) =

�
x2 − 4x+ 2

�
f(x).

Using the methods of §6.4 we set
f(x) = u(x)x2e−x,

so that

ḟ ′(x) = u′(x)x2e−x + u(x)(2x− x2)e−x, f ′′(x) = u′′(x)x2e−x + 2u′(x)(2x− x2)e−x + u(x)
�
x2 − 4x+ 2

�
e−x.

So we have

x2
�
u′′(x)x2e−x + 2u′(x)(2x− x2)e−x + u(x)

�
x2 − 4x+ 2

�
e−x

�
=
�
x2 − 4x+ 2

�
u(x)x2e−x

which simplifies to
u′′(x)x2 + 2u′(x)(2x− x2) = 0.

This is a separable DE which rearranges to

u′′(x)

u′(x)
=
2(x2 − 2x)

x2
= 2−

4

x
.

Integrating we find
lnu′(x) = 2x− 4 lnx+ const..

So
u′(x) = Ax−4e2x

for some constant A. We then have an independent solution

f(x) = x2e−x
�
x

1

t−4e2tdt.

For 0 < ε < 1 we note
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and so for 0 < ε < 1 we also have

|f(ε)| � ε2e−ε
	
ε−3 − 1
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ε−1 − ε2
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.

We know that x−1 does not have a Laplace transform, as x−1e−sx is not integrable on (0, 1) for any s, and similarly
this solution f will not have a convergent Laplace transform either.


