Solution (#1716) The DE transforms to

$$s(1-s)\frac{\mathrm{d}\bar{y}}{\mathrm{d}s} + (n+1-s)\bar{y} = 0$$

so that

$$\bar{y}(s) = A \frac{(s-1)^n}{s^{n+1}}$$

for some constant A. We noted previously that $\overline{L_n}(s) = (s-1)^n s^{-n-1}$. Inverting we see

n	$\overline{L_n}(s)$	$L_n(x)$
0	s^{-1}	1
1	$s^{-1} - s^{-2}$	1-x
2	$s^{-1} - 2s^{-2} + s^{-3}$	$1 - 2x + \frac{1}{2}x^2$