Solution (#1737) The planet’s position vector r(t) satisfies
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where M is the mass of the sun and G is the universal gravitational constant.
(i) By taking components of the acceleration in the e and f directions we find
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and so 720 = h is constant during the planet’s motion.
(ii) Set u = 1/r so that r = 1/u. We also have h = r20. So by the chain rule
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Similarly
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(iii) Recall, taking the component of the acceleration parallel to e, we found
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As 0 = h/r? = hu? and using (ii) we find
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which simplifies as
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This has general solution oM
u(f) = Acosf + Bsinf + >z

By changing the choice of half-line § = 0 appropriately we may assume that B = 0 and A > 0. Alternatively we can
employ an identity Acos€ + Bsinf = Rcos(6 — «). We now have

1 GM
% = ACOS 0 + F,
which we recognize to be a conic section from (4.18).
(iv) Suppose initially that 6 = 0, r = (R, 0) and © = (0, V). We then have initially from the velocity components found
in (ii) that .
r=R, =0, 0=V
So h = r(rf) = RV and
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The planet’s path (a conic) will be an ellipse if 7(#) remains bounded and so we need that the RHS never reaches zero.

For this to happen we need
1 GM GM
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or equivalently )
RV <2GM.



