Solution (#1741) Let A be a square matrix, and M(t) be matrices such that M'(t) = AM(t) and M(0) = I. By assumption we know that there are matrices e^{At} such that

(i)
$$\frac{\mathrm{d}}{\mathrm{d}t} \left(e^{At} \right) = A e^{At}$$
, (ii) $e^{At} = I$ when $t = 0$, (iii) e^{At} commutes with A .

If we consider $N(t) = e^{-At}M(t)$ then we have that $N(0) = I^2 = I$ and also by the product rule that

$$N'(t) = -Ae^{-At}M(t) + e^{-At}M'(t)$$

= $-Ae^{-At}M(t) + e^{-At}AM(t)$ [by (i)]
= $-Ae^{-At}M(t) + Ae^{-At}M(t)$ [by (iii)]
= 0.

—

It follows that N(t) is constant and so that

$$e^{-At}M(t) = I$$
 for all t .

As e^{At} has the necessary properties of M(t) then we have

$$e^{-At}e^{At} = I$$

and so these matrices are inverses of one another. Hence

$$M(t) = e^{At}e^{-At}M(t) = e^{At},$$

as required.