Solution (\#1748) Let

$$
A=\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)
$$

where a, b, c are real and $a \neq c$. In a similar fashion to $\# 1747$ we set

$$
M(t)=e^{A t}=\left(\begin{array}{ll}
\alpha(t) & \beta(t) \\
\gamma(t) & \delta(t)
\end{array}\right)
$$

with

$$
M^{\prime}(t)=A M(t), \quad M(0)=I_{2} .
$$

So

$$
\alpha^{\prime}(t)=a \alpha(t)+b \gamma(t), \quad \beta^{\prime}(t)=a \beta(t)+b \delta(t), \quad \gamma^{\prime}(t)=c \gamma(t), \quad \delta^{\prime}(t)=c \delta(t)
$$

Looking at the last two equations we see that

$$
\gamma(t)=\gamma(0) e^{c t}=0 ; \quad \delta(t)=\delta(0) e^{c t}=e^{c t}
$$

Then

$$
\alpha(t)=\alpha(0) e^{a t}=e^{a t}
$$

Finally

$$
\beta^{\prime}(t)-a \beta(t)=b e^{c t} .
$$

Applying an integrating factor of $e^{-a t}$ and integrating we see

$$
\beta(t) e^{-a t}=\frac{b}{c-a} e^{(c-a) t}+\text { const.. }
$$

As $\beta(0)=0$ then

$$
\beta(t) e^{-a t}=\frac{b}{c-a} e^{(c-a) t}-\frac{b}{c-a} \quad \Longrightarrow \quad \beta(t)=\frac{b\left(e^{c t}-e^{a t}\right)}{c-a} .
$$

Hence setting $t=1$ we have

$$
e^{A}=\left(\begin{array}{cc}
e^{a} & b\left(\frac{e^{a}-e^{c}}{a-c}\right) \\
0 & e^{c}
\end{array}\right) \quad \text { when } a \neq c
$$

If $a=c$ we can make a similar argument to the one above. Alternatively we can let a tend to c noting that

$$
\lim _{a \rightarrow c} \frac{e^{a}-e^{c}}{a-c}=e^{c}
$$

as this limit is the derivative of e^{x} at $x=c$. Hence

$$
\exp \left(\left(\begin{array}{cc}
c & b \\
0 & c
\end{array}\right)\right)=\left(\begin{array}{cc}
e^{c} & b e^{c} \\
0 & e^{c}
\end{array}\right)
$$

