Last updated: $25^{\text {th }}$ July 2018

TYPOGRAPHICAL OMISSIONS AND ERRORS

p.xv Abbreviations table: "row-reduced" should read "reduced row"
p. 69 At the end of the page " (i) If $B(1)$ is true" should read " $(i) B(1)$ is true"
p. 126 \#481 line 4: "so that if moves" should read "so that if P moves"
p. 143 (IP1) should read $\left(\alpha_{1} u+\alpha_{2} v\right) \cdot w=\alpha_{1} u \cdot w+\alpha_{2} v \cdot w$
p. 162 In the section title there is a full stop missing between "Simultaneous Equations" and "Inverses"
p. 208 Definition 3.130 "then $A \mathbf{v}$ is in \mathbf{v} " should read "then $A \mathbf{v}$ is in V "
p. 220 \#779(ii) "from R_{n} and R_{m} " should read "from R_{n} to R_{m} "
p. 236 \#839 the cubic should read " $x^{3}+a x^{2}+b x+c$ " rather than " $z^{3}+a x^{2}+b x+c$ "
p. 264 "matrix in diagonal from" should read "matrix in diagonal form"
p. 277 \#1020 should read "Let G_{n} denote the graph in which a vertex called the hub is connected to each of n tips, as in Figure 3.25a."
p. 283 Figure 4.1 $X Y$-co-ordinates should read $(X, Y)=(-8,3)$ and $(X, Y)=(5,-2)$
p. 304 The theta appearing in (4.17) should be a gamma
p. 336 \#1235 The basis \mathcal{V} should read $\left\{\mathbf{v}, T \mathbf{v}, T^{2} \mathbf{v}, \ldots, T^{n-1} \mathbf{v}\right\}$.
p. 345 In the functional equation the exponent of π is $s-1$ and not 2-1
p. 357 \#1278 The first summand should be $f(k)$ and not $f(n)$
p. 406 There is a missing " $=$ " sign from the start of the second line
P. 429 In Figure 6.1 the difference in y co-ordinates is $f(a+h)-f(a)$

MATHEMATICAL OMISSIONS AND ERRORS

p. 56 \#183 The y co-ordinate should read $y=1 / 2 \sin t-1 / 4 \sin 2 t$
p. 251 In Proposition 3.186 it should be made clear that $\mathbf{a} \neq \mathbf{0}$
p. 291 In Definition 4.16 it should be made clear that the λ_{i} are distinct
p. 325 The page's last line should read $P_{2}^{\top} A Q_{1}=P_{2}^{\top} P_{1} D=0_{m-r, r} D=0_{m-r, r}$
p. 340 In \#1254 it should be made clear that n is constant as well

