Solution (#234)

- (i) P(0) is true; for $n \ge 0$, if P(n) is true then P(n+2) is true.
- P(n) must necessarily be true for even n.
- (ii) P(1) is true; for $n \ge 0$, if P(n) is true then P(2n) is true.
- P(n) must necessarily be true when n is a non-negative power of 2.
- (iii) For $n \ge 0$, if P(n) is true then P(n+3) is true.
- As it is not clear that any initial case need be true, then we cannot conclude that any P(n) at all is true.
- (iv) P(0) and P(1) are true; for $n \ge 0$, if P(n) is true then P(n+2) is true.
- P(n) must necessarily be true for all natural numbers n.
- (v) P(0) and P(1) are true; for $n \ge 0$, if P(n) and P(n+1) are true then P(n+2) is true.
- P(n) must necessarily be true for all natural numbers n.
- (vi) P(0) is true; for $n \ge 0$, if P(n) is true then P(n+2) and P(n+3) are both true.
- P(n) must necessarily be true for $n \neq 1$.
- (vii) P(0) is true; for $n \ge 0$, if P(n+1) is true then P(n+2) is true.
- Only P(0) need be true.