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In order to complete the inductive step we now need to show
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For n � 1 we have

12n3 + 28n2 + 19n+ 4 � 12n3 + 2n2 + 20n+ 4,
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proving (9.9) and we conclude �
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The proof of the right inequality follows by induction. The other inequality follows in a similar fashion.
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are both 2. Suppose now that (9.10) is true in a particular nth case. Then
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For n � 1 we have
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and the proof of the left inequality follows by induction.


