
Solution (#296) The inequality
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holds for n = 0 with both sides being equal to 1. Suppose that the inequality holds for n = N � 0. Then
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[as N � 0]
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and the result follows by induction.
Consider now the subsets of {1, 2, . . . , 2n} . If we split the set into n pairs

{1, 2} , {3, 4} , · · · {2n− 1, 2n} .

We can immediately generate 2n subsets of {1, 2, . . . , 2n} of size n by choosing precisely one element from each pair.
As there are, in total,
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subsets of {1, 2, . . . , 2n} of size n it must follow that
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