
Solution (#319) Let n � 0. In #75 we set z = cis θ and saw 2 cosnθ = zn + z−n. So by the binomial theorem we
have that
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where the penultimate sum is arrived at by combining the kth and (2n+ 1− k)th terms for 0 � k < n.
If we integrate both sides with respect to θ between the limits of θ = 0 and θ = π/2 and use the formula found in

#263 we see
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Rearranging we then arrive at
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