Solution (#324) We shall prove the following more general result first: if p_1, \ldots, p_n and x_1, \ldots, x_n are reals such that

$$p_1 + p_2 + \dots + p_n = 1$$
, and $p_i \geqslant 0$ for each i ,

then

$$(p_1x_1 + p_2x_2 + \dots + p_nx_n)^2 \le p_1(x_1)^2 + p_2(x_2)^2 + \dots + p_n(x_n)^2.$$

Note that

$$\left(\sum_{i=1}^{n} p_{i}(x_{i})^{2}\right) - \left(\sum_{i=1}^{n} p_{i}x_{i}\right)^{2} = \left(\sum_{i=1}^{n} p_{i}(1 - p_{i})(x_{i})^{2}\right) - 2\sum_{i < j} p_{i}p_{j}x_{i}x_{j}$$

$$= \left(\sum_{i=1}^{n} p_{i}\left(\sum_{j \neq i} p_{j}\right)(x_{i})^{2}\right) - 2\sum_{i < j} p_{i}p_{j}x_{i}x_{j}$$

$$= \left(\sum_{i \neq j} p_{i}p_{j}(x_{i})^{2}\right) - 2\sum_{i < j} p_{i}p_{j}x_{i}x_{j}$$

$$= \sum_{i < j} p_{i}p_{j}\left((x_{i})^{2} - 2x_{i}x_{j} + (x_{j})^{2}\right)$$

$$= \sum_{i < j} p_{i}p_{j}\left(x_{i} - x_{j}\right)^{2} \geqslant 0.$$

Suppose now that a random variable X takes values x_1, \ldots, x_n with probabilities p_1, \cdots, p_n . We have just shown that $E(X)^2 = (p_1x_1 + \cdots + p_nx_n)^2 \leq p_1(x_1)^2 + \cdots + p_n(x_n)^2 = E(X^2)$.

Our desired result follows by taking $X = |N - \mu|$. Further we see from the above proof that we get a strict inequality unless X is constant. For $X = |N - \mu|$, where N is binomially distributed, this means that p = 0 or p = 1.