
Solution (#385) Firstly note that the given answer can be rewritten as
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where α = (1 +
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5)/2 is as defined in Proposition 86. Note that
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and so it seems reasonable to conjecture that
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If this is true then the exercise is completed by letting n→∞.
The above is true for n = 1 as 1/F1+1/F2 = 2 = 3−1/1 = 3−F1/F2. If our conjecture holds in the nth case then
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To conclude the proof we desire result

1

F2n+1
−
F2n−1
F2n

= −
F2n+1−1
F2n+1

,

which is equivalent to
F2n = F2n+1F2n−1 − F2n+1−1F2n

which is a special case of d’Ocagne’s Identity (#351).


