Solution (#421) Let B_n denote the number of ways to cover a $3 \times n$ grid using 3×1 rectangular tiles. If we start tiling the $3 \times n$ grid from the left, there are two ways to proceed as shown below: | 1 |
• • • | | 1 | 1 | 1 | | |---|-----------|----|---|---|---|--| | 1 |
• • • | or | 2 | 2 | 2 | | | 1 |
 | | 3 | 3 | 3 | | If we begin with a vertical tile then there are B_{n-1} ways to continue; if we begin with two horizontal tiles then there are B_{n-3} ways to continue. Hence $$B_n = B_{n-1} + B_{n-3}.$$ We have $B_1=1,\,B_2=1$ and $B_3=2.$ Hence we generate a table | n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |-----------|---|---|---|---|---|---|---|----|----|----| | B_{n-3} | | | | 1 | 1 | 2 | 3 | 4 | 6 | 9 | | B_{n-1} | | 1 | 1 | 2 | 3 | 4 | 6 | 9 | 13 | 19 | | B_n | 1 | 1 | 2 | 3 | 4 | 6 | 9 | 13 | 19 | 28 |