Solution (#448) Let $\alpha > 0$. If $\alpha = [q_0, q_1, \dots, q_n]$ for some integers q_0, q_1, \dots, q_n then α is clearly rational.

Conversely suppose that $\alpha = a/b$ is a rational in its lowest form. We create here two sequences q_i and r_i of non-negative integers such that

$$a = q_0 b + r_0,$$
 where $0 \le r_0 < b;$
 $b = q_1 r_0 + r_1,$ where $0 \le r_1 < r_0;$
 $r_0 = q_2 r_1 + r_2,$ where $0 \le r_2 < r_1,$

and so on. As the integer sequence is decreasing and bounded below by 0 then this process must eventually terminate with some $r_n = 0$.

Then

$$\left\lfloor \alpha \right\rfloor = \left\lfloor \frac{a}{b} \right\rfloor = \left\lfloor q_0 + \frac{r_0}{b} \right\rfloor = q_0;$$

$$\alpha_1 = \frac{1}{\alpha - \lfloor \alpha \rfloor} = \frac{1}{r_0/b} = \frac{b}{r_0} \quad \text{so that } \lfloor \alpha_1 \rfloor = \left\lfloor \frac{b}{r_0} \right\rfloor = q_1 \text{ as } \frac{r_1}{r_0} < 1;$$

$$\alpha_2 = \frac{1}{\alpha_1 - \lfloor \alpha_1 \rfloor} = \frac{1}{r_1/r_0} = \frac{r_0}{r_1} \quad \text{so that } \lfloor \alpha_2 \rfloor = \left\lfloor \frac{r_0}{r_1} \right\rfloor = q_2 \text{ as } \frac{r_2}{r_1} < 1.$$

We have from #442 that

$$\alpha = [\lfloor \alpha \rfloor, \alpha_1] = [\lfloor \alpha \rfloor, \lfloor \alpha_1 \rfloor, \alpha_2] = \dots = [q_0, q_1] = [q_0, q_1, q_2] = \dots$$

and know that this process eventually terminates with α_n being an integer and

$$\alpha = [\lfloor \alpha \rfloor, \lfloor \alpha_1 \rfloor, \lfloor \alpha_2 \rfloor, \dots, \lfloor \alpha_{n-1} \rfloor, \alpha_n] = [q_0, q_1, q_2, \dots, q_{n-1}, q_n].$$

Remark: Some may recognize that we have described the Euclidean Algorithm above to generate the sequences q_i and r_i . The last non-zero remainder r_{n-1} is the highest common factor of a and b, the calculation of which is the purpose of the algorithm.