
Solution (#448) Let α > 0. If α = [q0, q1, . . . , qn] for some integers q0, q1, . . . , qn then α is clearly rational.
Conversely suppose that α = a/b is a rational in its lowest form. We create here two sequences qi and ri of

non-negative integers such that

a = q0b+ r0, where 0 � r0 < b;

b = q1r0 + r1, where 0 � r1 < r0;

r0 = q2r1 + r2, where 0 � r2 < r1,

and so on. As the integer sequence is decreasing and bounded below by 0 then this process must eventually terminate
with some rn = 0.
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We have from #442 that

α = [⌊α⌋, α1] = [⌊α⌋, ⌊α1⌋, α2] = · · · = [q0, q1] = [q0, q1, q2] = · · ·

and know that this process eventually terminates with αn being an integer and

α = [⌊α⌋, ⌊α1⌋, ⌊α2⌋, . . . , ⌊αn−1⌋, αn] = [q0, q1, q2, . . . , qn−1, qn] .

Remark: Some may recognize that we have described the Euclidean Algorithm above to generate the sequences qi
and ri. The last non-zero remainder rn−1 is the highest common factor of a and b, the calculation of which is the
purpose of the algorithm.


