Solution (#479) (i) by considering the various ways P can reach a given point at time t we see that

- X_2 is distributed with probabilities $\frac{1}{9}$, $\frac{2}{9}$, $\frac{3}{9}$, $\frac{2}{9}$, $\frac{1}{9}$ on -2, -1, 0, 1, 2.
- X_3 is distributed with probabilities $\frac{1}{27}, \frac{3}{27}, \frac{6}{27}, \frac{7}{27}, \frac{6}{27}, \frac{3}{27}, \frac{1}{27}$ on $-3, -2, -1, 0, 1, 2, 3$.
- X_4 is distributed with probabilities $\frac{1}{81}, \frac{4}{81}, \frac{10}{81}, \frac{16}{81}, \frac{19}{81}, \frac{16}{81}, \frac{10}{81}, \frac{4}{81}, \frac{1}{81}$ on $-4, -3, -2, -1, 0, 1, 2, 3, 4$.

(ii) In a similar fashion if we consider the number of ways x^k can be attained when expanding the t brackets

$$
(x^{-1} + 1 + x)(x^{-1} + 1 + x) \cdots (x^{-1} + 1 + x)
$$

we see that there is an x^k term for each possible journey of P that ends at k. Each such journey has probability 3^{-t} and so the result follows. Note that these probabilities are the trinomial coefficients divided by 3^t (see #341).

(iii) By symmetry we can see that the mean of X_t is 0; for every path leading to k there is a corresponding one leading to $-k$ where all the +1 moves have been replaced by -1 moves and vice-versa. Alternatively we can write

$$
3^{-t}(x^{-1} + 1 + x)^{t} = \sum_{k=-t}^{t} p_{t}^{k} x^{k}.
$$

We are seeking to determine $\sum k p_t^k$. If we differentiate we obtain

$$
3^{-t}t\left(1-x^{-2}\right)(x^{-1}+1+x)^{t-1} = \sum_{k=-t}^{t} kp_t^k x^{k-1}.
$$

Setting $x = 1$ we see that the mean is indeed 0. Arguing this way we can also work out the mean of $(X_t)^2$. We have

$$
3^{-t}t\left(x-x^{-1}\right)(x^{-1}+1+x)^{t-1} = \sum_{k=-t}^{t} kp_t^k x^k
$$

.

Differentiating we have

$$
3^{-t}t(t-1)\left(x-x^{-1}\right)(1-x^{-2})(x^{-1}+1+x)^{t-2}+3^{-t}t\left(1+x^{-2}\right)(x^{-1}+1+x)^{t-1}=\sum_{k=-t}^{t}k^2p_t^kx^{k-1}.
$$

Setting $x = 1$ again we have that

$$
\sum_{k=-t}^{t} k^2 p_t^k = \frac{2t}{3}.
$$

(This ties in with our previous result for the binomial random walk, where $(X_t)^2$ has mean t. For this trinomial walk only two-thirds of the time will P actually move.)