
Solution (#479) (i) by considering the various ways P can reach a given point at time t we see that

• X2 is distributed with probabilities 1
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• X3 is distributed with probabilities 1
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on −3,−2,−1, 0, 1, 2, 3.

• X4 is distributed with probabilities 1
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on −4,−3,−2,−1, 0, 1, 2, 3, 4.

(ii) In a similar fashion if we consider the number of ways xk can be attained when expanding the t brackets

(x−1 + 1 + x)(x−1 + 1 + x) · · · (x−1 + 1 + x)

we see that there is an xk term for each possible journey of P that ends at k. Each such journey has probability 3−t

and so the result follows. Note that these probabilities are the trinomial coefficients divided by 3t (see #341).
(iii) By symmetry we can see that the mean of Xt is 0; for every path leading to k there is a corresponding one

leading to −k where all the +1 moves have been replaced by −1 moves and vice-versa. Alternatively we can write
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We are seeking to determine
�
kpk
t
. If we differentiate we obtain
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Setting x = 1 we see that the mean is indeed 0. Arguing this way we can also work out the mean of (Xt)
2. We have
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Differentiating we have
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Setting x = 1 again we have that
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(This ties in with our previous result for the binomial random walk, where (Xt)2 has mean t. For this trinomial walk
only two-thirds of the time will P actually move.)


