Solution (#480) (i) by considering the various ways P can reach a given point at time t we see that

• X_2 is distributed with probabilities on -2, -1, 0, 1, 2.

$$r^2$$
, $2qr$, $q^2 + 2pr$, $2pq$, p^2 .

• X_3 is distributed on -3, -2, -1, 0, 1, 2, 3 with probabilities

$$r^3$$
, $3qr^2$, $3q^2r + 3pr^2$, $q^3 + 6pqr$, $3pr^2 + 3pq^2$, $3qp^2$, p^3 .

• X_4 is distributed on -4, -3, -2, -1, 0, 1, 2, 3, 4 with probabilities

$$r^4$$
, $4qr^3$, $6q^2r^2 + 4pr^3$, $12pqr^2 + 4q^3r$, $q^4 + 12pq^2r + 6p^2r^2$, $12p^2qr + 4pq^3$, $6p^2q^2 + 4p^3r$, $4p^3q$, p^4 .

(ii) Arguing as in #479, the probability of P being at k at time t equals the coefficient of x^k in

$$\left(\frac{r}{x} + q + px\right)^t$$
.

(iii) If we write

$$\left(\frac{r}{x} + q + px\right)^t = \sum_{k=-t}^t p_t^k x^k,$$

then differentiating gives

$$t\left(p-\frac{r}{x^2}\right)\left(\frac{r}{x}+q+px\right)^{t-1} = \sum_{k=-t}^t k p_t^k x^{k-1},$$

Setting x = 1 we see that the mean of X_t equals

$$t(p-r)$$

recalling that p+q+r=1. To find the mean of $(X_t)^2$, as in #479, we differentiate

$$t\left(px - \frac{r}{x}\right)\left(\frac{r}{x} + q + px\right)^{t-1} = \sum_{k=-t}^{t} kp_t^k x^k,$$

to get

$$t(t-1)\left(px-\frac{r}{x}\right)\left(-\frac{r}{x^2}+p\right)\left(\frac{r}{x}+q+px\right)^{t-2}+t\left(p+\frac{r}{x^2}\right)\left(\frac{r}{x}+q+px\right)^{t-1}=\sum_{k=-t}^t k^2 p_t^k x^{k-1}.$$

Setting x = 1 we get that

$$\sum_{k=-t}^{t} k^{2} p_{t}^{k} = t(t-1)(p-r)(-r+p) + t(p+r) = t(t-1)(p-r)^{2} + t(p+r).$$