Solution (#480) (i) by considering the various ways P can reach a given point at time ¢ we see that

e Xs is distributed with probabilities on —2, —1,0,1, 2.
%, 2qr, ¢*+2pr, 2pg, PP
e X3 is distributed on —3,—2, —1,0, 1, 2,3 with probabilities
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3¢°r +3pr®,  ¢*+6pgr, 3pr® +3pg®, 3qp’, p’.
e X, is distributed on —4, -3, —2,—1,0, 1, 2, 3,4 with probabilities
o Agrd, 6¢%r +4Aprd, 12pqr? +4¢%r, ¢t 4 12pgPr +6pPr?,  12p%qr+4pg®,  6pPd +4pPr,  4pPq, pt.
(ii) Arguing as in #479, the probability of P being at k at time ¢ equals the coefficient of z* in
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(iii) If we write \
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then differentiating gives
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Setting © = 1 we see that the mean of X; equals
t(p - T)?
recalling that p + ¢ +r = 1. To find the mean of (X;)?, as in #479, we differentiate
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to get
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Setting = 1 we get that

S EpE=tt—1)(p—r)(-r+p) +tp+r)=tlt—-1)(p-r)?+tp+r)
k=—t



