Solution (\#1056) Let

$$
D=\left(\begin{array}{ccc}
5 & -3 & -5 \\
2 & 9 & 4 \\
-1 & 0 & 7
\end{array}\right)
$$

and $T=\mu_{D}$. We are asked to find a basis $\mathcal{V}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ for \mathbb{R}_{3} such that

$$
\mathcal{V} T_{\mathcal{V}}=\left(\begin{array}{lll}
a & 0 & 0 \\
0 & c & e \\
0 & 0 & f
\end{array}\right)
$$

As $c_{D}(x)=(x-6)^{2}(x-9)$ this means that a, c, f equal $6,6,9$ in some order. It also means that \mathbf{v}_{1} is an a-eigenvector of T and that \mathbf{v}_{2} is a c-eigenvector.

So we might choose $\mathbf{v}_{1}=(-2,1,1)^{T}$ and $a=9$, and choose $\mathbf{v}_{2}=(1,-2,1)^{T}$ and $c=6$. Given those choices it means that $f=6$.

We then need a third vector \mathbf{v}_{3}, independent of \mathbf{v}_{1} and \mathbf{v}_{2}, and such that $D \mathbf{v}_{3}=e \mathbf{v}_{2}+6 \mathbf{v}_{3}$ or equivalently

$$
(D-6 I) \mathbf{v}_{3}=e \mathbf{v}_{2}
$$

If such a vector \mathbf{v}_{3} exists then a non-zero multiple of it will also have the desired properties so we can assume $e=1$ without any loss of generality. So we have the system

$$
\left(\begin{array}{rrr|r}
-1 & -3 & -5 & 1 \\
2 & 3 & 4 & -2 \\
-1 & 0 & 1 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{rrr|r}
1 & 3 & 5 & -1 \\
0 & -3 & -6 & 0 \\
0 & -3 & -6 & 0
\end{array}\right) \longrightarrow\left(\begin{array}{rrr|r}
1 & 0 & -1 & -1 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

which has solution $\mathbf{v}_{3}=(0,-2,1)^{T}$ and

$$
\mathcal{V}=\left\{(-2,1,1)^{T},(1,-2,1)^{T},(0,-2,1)^{T}\right\} ; \quad \nu T_{\mathcal{V}}=\left(\begin{array}{ccc}
9 & 0 & 0 \\
0 & 6 & 1 \\
0 & 0 & 6
\end{array}\right)
$$

Taking powers of $\mathcal{V} T_{\mathcal{V}}$ it is fairly clear we will have

$$
\mathcal{V}\left(T^{n}\right) \mathcal{V}=\left(\begin{array}{ccc}
9^{n} & 0 & 0 \\
0 & 6^{n} & c_{n} \\
0 & 0 & 6^{n}
\end{array}\right)
$$

and then the c_{n} must satisfy the recurrence relation

$$
c_{n+1}=6 c_{n}+6^{n}, \quad c_{1}=1
$$

The solution of this recurrence is $c_{n}=n 6^{n-1}$.
Now

$$
D^{n}=\mathcal{E}\left(T^{n}\right)_{\mathcal{E}}=\left(\mathcal{E} I_{\mathcal{V}}\right)\left(\mathcal{V}\left(T^{n}\right)_{\mathcal{V}}\right)\left(\mathcal{V} I_{\mathcal{E}}\right)
$$

We have

$$
\mathcal{E} I_{\mathcal{V}}=\left(\begin{array}{ccc}
-2 & 1 & 0 \\
1 & -2 & -2 \\
1 & 1 & 1
\end{array}\right), \quad \mathcal{V} I_{\mathcal{E}}=\left(\varepsilon_{\mathcal{E}} I_{\mathcal{V}}\right)^{-1}=\frac{1}{3}\left(\begin{array}{ccc}
0 & 1 & 2 \\
3 & 2 & 4 \\
-3 & -3 & -3
\end{array}\right)
$$

Hence

$$
\begin{aligned}
D^{n} & =\left(\begin{array}{ccc}
-2 & 1 & 0 \\
1 & -2 & -2 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{ccc}
9^{n} & 0 & 0 \\
0 & 6^{n} & n 6^{n-1} \\
0 & 0 & 6^{n}
\end{array}\right) \frac{1}{3}\left(\begin{array}{ccc}
0 & 1 & 2 \\
3 & 2 & 4 \\
-3 & -3 & -3
\end{array}\right) \\
& =\frac{1}{3}\left(\begin{array}{ccc}
-2 \times 9^{n} & 6^{n} & n 6^{n-1} \\
9^{n} & -2 \times 6^{n} & -2(n+6) 6^{n-1} \\
9^{n} & 6^{n} & (n+6) 6^{n-1}
\end{array}\right)\left(\begin{array}{ccc}
0 & 1 & 2 \\
3 & 2 & 4 \\
-3 & -3 & -3
\end{array}\right) \\
& =\left(\begin{array}{ccc}
(6-n) 6^{n-1} & -6 \times 9^{n-1}+4 \times 6^{n-1}-n 6^{n-1} & -12 \times 9^{n-1}+8 \times 6^{n-1}-n 6^{n-1} \\
2 n 6^{n-1} & 3 \times 9^{n-1}+(2 n+4) 6^{n-1} & 6 \times 9^{n-1}+(2 n-4) 6^{n-1} \\
-n 6^{n-1} & 3 \times 9^{n-1}-(n+2) 6^{n-1} & 6 \times 9^{n-1}+(2-n) 6^{n-1}
\end{array}\right)
\end{aligned}
$$

