Solution (\#1060) Let A be the associated matrix of a shear of \mathbb{R}_{3}. Take vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ so that \mathbf{v}_{3} is normal to the invariant plane and $\mathbf{v}_{1}, \mathbf{v}_{2}$ are parallel to the plane and let X_{1}, X_{2}, X_{3} be the corresponding co-ordinates.

With respect to these co-ordinates the invariant plane has equation $X_{3}=0$ and so, in a similar fashion to $\# 1096$, we see that the shear has associated matrix

$$
\left(\begin{array}{ccc}
1 & 0 & d_{1} \\
0 & 1 & d_{2} \\
0 & 0 & 1
\end{array}\right)
$$

for some d_{1}, d_{2}. In particular we see $\operatorname{trace} A=3$ and $\operatorname{det} A=1$, noting that neither of these changes with the change of co-ordinates.

Note from above that $c_{A}(x)=(x-1)^{3}$ for any shear A. However knowing $\operatorname{trace} A=3$ and $\operatorname{det} A=1$ of a matrix A only specifies the x^{2} and constant coefficients in $c_{A}(x)$. For example any matrix A with characteristic polynomial

$$
c_{A}(x)=x^{3}-3 x^{2}+k x-1
$$

would have $\operatorname{trace} A=3$ and $\operatorname{det} A=1$ but could not be a shear if $k \neq 3$.
If we take $k=-5$ so that $x=-1$ is a root we obtain

$$
\begin{aligned}
x^{3}-3 x^{2}-5 x-1 & =(x+1)\left(x^{2}-4 x-1\right) \\
& =(x+1)\left((x-2)^{2}-5\right) .
\end{aligned}
$$

So a matrix A which is not a shear but has $\operatorname{trace} A=3$ and $\operatorname{det} A=1$ is

$$
\operatorname{diag}(-1,2-\sqrt{5}, 2+\sqrt{5})
$$

and we see that the converse does not hold.

