Solution (\#1090) Let A be a 3×3 matrix such that $A(\mathbf{v} \wedge \mathbf{w})=A \mathbf{v} \wedge A \mathbf{w}$ for all \mathbf{v}, \mathbf{w} in \mathbb{R}_{3}. Setting $\mathbf{v}=\mathbf{i}, \mathbf{w}=\mathbf{j}$ we have

$$
A \mathbf{k}=A \mathbf{i} \wedge A \mathbf{j}
$$

and then by $\# 911$

$$
|A \mathbf{k}|^{2}=A \mathbf{k} \cdot A \mathbf{k}=[A \mathbf{i}, A \mathbf{j}, A \mathbf{k}]=\operatorname{det} A \times[\mathbf{i}, \mathbf{j}, \mathbf{k}]=\operatorname{det} A .
$$

Similarly we can show

$$
|A \mathbf{i}|^{2}=|A \mathbf{j}|^{2}=|A \mathbf{k}|^{2}=\operatorname{det} A
$$

and in particular $\operatorname{det} A>0$. We also have

$$
A \mathbf{i} \cdot A \mathbf{k}=A \mathbf{i} \cdot(A \mathbf{i} \wedge A \mathbf{j})=0
$$

and likewise
This means that

$$
A \mathbf{i} \cdot A \mathbf{j}=A \mathbf{j} \cdot A \mathbf{k}=A \mathbf{i} \cdot A \mathbf{k}=0
$$

$$
\frac{A \mathbf{i}}{\sqrt{\operatorname{det} A}}, \quad \frac{A \mathbf{j}}{\sqrt{\operatorname{det} A}}, \quad \frac{A \mathbf{k}}{\sqrt{\operatorname{det} A}}
$$

is an orthonormal basis and so $A=\sqrt{\operatorname{det} A} P$ where P is an orthogonal matrix with $\operatorname{det} P=1$. Thus, by Corollary 3.157 (b),

$$
\operatorname{det} A=\operatorname{det}(\sqrt{\operatorname{det} A} P)=(\sqrt{\operatorname{det} A})^{3} \operatorname{det} P=(\operatorname{det} A)^{3 / 2}
$$

and hence $\operatorname{det} A=1$. Hence A is necessarily orthogonal with $\operatorname{det} A=1$.

