Solution (#1103) Let R denote an orthogonal 3×3 matrix with det R = 1 and let $R(\mathbf{i}, \theta)$ and $R(\mathbf{j}, \theta)$ be as in #1101.

(i) Suppose that $R\mathbf{i} = \mathbf{i}$. Then the first column of R's matrix is $(1,0,0)^T$. Further as the first row of R is a unit vector then R's first row is (1,0,0). So we have R = diag(1,Q) for some 2×2 matrix Q. As

$$I_3 = R^T R = \operatorname{diag}\left(1, Q^T\right) \operatorname{diag}\left(1, Q\right) = \operatorname{diag}\left(1, Q^T Q\right)$$

then $Q^T Q = I_2$ and so Q is orthogonal. Further as det R = 1 then det Q = 1. By Example 4.18 we see $Q = R_{\theta}$ for some θ in the range $-\pi < \theta \leq \pi$ and hence

$$R = \left(\begin{array}{rrr} 1 & 0 & 0\\ 0 & \cos\theta & -\sin\theta\\ 0 & \sin\theta & \cos\theta \end{array}\right),$$

as required.

(ii) In the absence of the condition $R\mathbf{i} = \mathbf{i}$, it still remains the case that $R\mathbf{i}$ is a unit vector as R is orthogonal. Say $R\mathbf{i} = (x, y, z)$ where $x^2 + y^2 + z^2 = 1$. We wish to find c, d, α such that $R(\mathbf{i}, \alpha)^{-1}R\mathbf{i} = c\mathbf{i} + d\mathbf{k}$ or equivalently

$$\begin{pmatrix} x \\ y\cos\alpha + z\sin\alpha \\ -y\sin\alpha + z\cos\alpha \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\alpha & \sin\alpha \\ 0 & -\sin\alpha & \cos\alpha \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} c \\ 0 \\ d \end{pmatrix}.$$

Hence we must set c = x. We further see that we need to choose α so that $\tan \alpha = -y/z$ and set $d = -y \sin \alpha + z \cos \alpha$. There are two choices of α in the range $-\pi < \alpha \leq \pi$ which differ by π . Hence the two different α lead to the same value of d save for its sign and we should choose the α that leads to d > 0. (The exception to this is when $R\mathbf{i} = \mathbf{i}$ already in which case any choice of α will do and we would have d = 0.)

We now need to determine β such that $R(\mathbf{j},\beta)^{-1}(c\mathbf{i}+d\mathbf{k})=\mathbf{i}$. This is equivalent to

$$\begin{pmatrix} c\cos\beta + d\sin\beta\\ 0\\ -c\sin\beta + d\cos\beta \end{pmatrix} = \begin{pmatrix} \cos\beta & 0 & \sin\beta\\ 0 & 1 & 0\\ -\sin\beta & 0 & \cos\beta \end{pmatrix} \begin{pmatrix} c\\ 0\\ d \end{pmatrix} = \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix}.$$
 (11.2)

As $c^2 + d^2 = 1$ and $d \ge 0$ we see that there is unique β in the range $0 \le \beta \le \pi$ such that $c = \cos \beta$ and $d = \sin \beta$. For this choice of β we see that (11.2) is true.

(iii) For these choices of α and β we have

$$R(\mathbf{j},\beta)^{-1}R(\mathbf{i},\alpha)^{-1}R\mathbf{i}=\mathbf{i}$$

So $R(\mathbf{j},\beta)^{-1}R(\mathbf{i},\alpha)^{-1}R$ is an orthogonal, determinant 1 matrix which fixes \mathbf{i} . By (i) we know that

$$R(\mathbf{j},\beta)^{-1}R(\mathbf{i},\alpha)^{-1}R = R(\mathbf{i},\gamma)$$

for some γ in the range $-\pi < \gamma \leqslant \pi$ and the required result follows.