Solution (\#1103) Let R denote an orthogonal 3×3 matrix with $\operatorname{det} R=1$ and let $R(\mathbf{i}, \theta)$ and $R(\mathbf{j}, \theta)$ be as in \#1101.
(i) Suppose that $R \mathbf{i}=\mathbf{i}$. Then the first column of R 's matrix is $(1,0,0)^{T}$. Further as the first row of R is a unit vector then R 's first row is $(1,0,0)$. So we have $R=\operatorname{diag}(1, Q)$ for some 2×2 matrix Q. As

$$
I_{3}=R^{T} R=\operatorname{diag}\left(1, Q^{T}\right) \operatorname{diag}(1, Q)=\operatorname{diag}\left(1, Q^{T} Q\right)
$$

then $Q^{T} Q=I_{2}$ and so Q is orthogonal. Further as $\operatorname{det} R=1$ then $\operatorname{det} Q=1$. By Example 4.18 we see $Q=R_{\theta}$ for some θ in the range $-\pi<\theta \leqslant \pi$ and hence

$$
R=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right)
$$

as required.
(ii) In the absence of the condition $R \mathbf{i}=\mathbf{i}$, it still remains the case that $R \mathbf{i}$ is a unit vector as R is orthogonal. Say $R \mathbf{i}=(x, y, z)$ where $x^{2}+y^{2}+z^{2}=1$. We wish to find c, d, α such that $R(\mathbf{i}, \alpha)^{-1} R \mathbf{i}=c \mathbf{i}+d \mathbf{k}$ or equivalently

$$
\left(\begin{array}{c}
x \\
y \cos \alpha+z \sin \alpha \\
-y \sin \alpha+z \cos \alpha
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & \sin \alpha \\
0 & -\sin \alpha & \cos \alpha
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
c \\
0 \\
d
\end{array}\right) .
$$

Hence we must set $c=x$. We further see that we need to choose α so that $\tan \alpha=-y / z$ and set $d=-y \sin \alpha+z \cos \alpha$. There are two choices of α in the range $-\pi<\alpha \leqslant \pi$ which differ by π. Hence the two different α lead to the same value of d save for its sign and we should choose the α that leads to $d>0$. (The exception to this is when $R \mathbf{i}=\mathbf{i}$ already in which case any choice of α will do and we would have $d=0$.)

We now need to determine β such that $R(\mathbf{j}, \beta)^{-1}(c \mathbf{i}+d \mathbf{k})=\mathbf{i}$. This is equivalent to

$$
\left(\begin{array}{c}
c \cos \beta+d \sin \beta \tag{11.2}\\
0 \\
-c \sin \beta+d \cos \beta
\end{array}\right)=\left(\begin{array}{ccc}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta
\end{array}\right)\left(\begin{array}{l}
c \\
0 \\
d
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) .
$$

As $c^{2}+d^{2}=1$ and $d \geqslant 0$ we see that there is unique β in the range $0 \leqslant \beta \leqslant \pi$ such that $c=\cos \beta$ and $d=\sin \beta$. For this choice of β we see that (11.2) is true.
(iii) For these choices of α and β we have

$$
R(\mathbf{j}, \beta)^{-1} R(\mathbf{i}, \alpha)^{-1} R \mathbf{i}=\mathbf{i} .
$$

So $R(\mathbf{j}, \beta)^{-1} R(\mathbf{i}, \alpha)^{-1} R$ is an orthogonal, determinant 1 matrix which fixes \mathbf{i}. By (i) we know that

$$
R(\mathbf{j}, \beta)^{-1} R(\mathbf{i}, \alpha)^{-1} R=R(\mathbf{i}, \gamma)
$$

for some γ in the range $-\pi<\gamma \leqslant \pi$ and the required result follows.

