Solution (#1109) Let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be an orthonormal set (and so independent). If we apply the Gram-Schmidt process to these vectors then at the first step we find

$$\mathbf{w}_1 = \frac{\mathbf{v}_1}{|\mathbf{v}_1|} = \frac{\mathbf{v}_1}{1} = \mathbf{v}_1.$$

Now say, as an inductive hypothesis, that $\mathbf{w}_i = \mathbf{v}_i$ for i < I when the Gram-Schmidt process has been applied. Then

$$\mathbf{y}_{I} = \mathbf{v}_{I} - (\mathbf{v}_{I} \cdot \mathbf{w}_{1}) \mathbf{w}_{1} - (\mathbf{v}_{I} \cdot \mathbf{w}_{2}) \mathbf{w}_{2} - \cdots (\mathbf{v}_{I} \cdot \mathbf{w}_{I-1}) \mathbf{w}_{I-1}$$

= $\mathbf{v}_{I} - (\mathbf{v}_{I} \cdot \mathbf{v}_{1}) \mathbf{v}_{1} - (\mathbf{v}_{I} \cdot \mathbf{v}_{2}) \mathbf{v}_{2} - \cdots (\mathbf{v}_{I} \cdot \mathbf{v}_{I-1}) \mathbf{v}_{I-1}$ [by hypothesis]
= \mathbf{v}_{I}

as the \mathbf{v}_i are orthonormal. Hence

$$\mathbf{w}_I = \frac{\mathbf{y}_I}{|\mathbf{y}_I|} = \frac{\mathbf{v}_I}{1} = \mathbf{v}_I.$$

The result follows by induction.