Solution (#1113) Let A be an $n \times n$ matrix and $T = \mu_A$ and $S = \mu_{A^T}$. Let \mathcal{V} be an orthonormal basis for \mathbb{R}_n and let \mathcal{E} denote the standard basis for \mathbb{R}_n . So we have

$$\varepsilon T \varepsilon = A$$
 and $\varepsilon S \varepsilon = A^T$.

As \mathcal{V} is orthonormal then $P = \varepsilon I_{\mathcal{V}}$ is orthogonal – the columns of P are the vectors in \mathcal{V} . We note that

$$\nu T_{\mathcal{V}} = (\nu I_{\mathcal{E}}) (\varepsilon T_{\mathcal{E}}) (\varepsilon I_{\mathcal{V}}) = P^{T} A P$$

and that

$$vS_{\mathcal{V}} = (vI_{\mathcal{E}})(\varepsilon S_{\mathcal{E}})(\varepsilon I_{\mathcal{V}}) = P^T A^T P.$$

Hence by the transpose product rule we have

$$(vTv)^T = (P^TAP)^T$$

$$= P^TA^TP^{TT}$$

$$= P^TA^TP = vSv$$

as required.