Solution (\#1113) Let A be an $n \times n$ matrix and $T=\mu_{A}$ and $S=\mu_{A^{T}}$. Let \mathcal{V} be an orthonormal basis for \mathbb{R}_{n} and let \mathcal{E} denote the standard basis for \mathbb{R}_{n}. So we have

$$
\mathcal{E}^{T_{\mathcal{E}}}=A \quad \text { and } \quad \varepsilon S_{\mathcal{E}}=A^{T} .
$$

As \mathcal{V} is orthonormal then $P={ }_{\varepsilon} I_{\mathcal{V}}$ is orthogonal - the columns of P are the vectors in \mathcal{V}. We note that

$$
\mathcal{V} T_{\mathcal{V}}=\left(\mathcal{V} I_{\mathcal{E}}\right)\left({ }_{\mathcal{E}} T_{\mathcal{E}}\right)\left({ }_{\mathcal{E}} I_{\mathcal{V}}\right)=P^{T} A P
$$

and that

$$
\mathcal{V} S_{\mathcal{V}}=\left(\mathcal{V} I_{\mathcal{E}}\right)\left(\mathcal{E} S_{\mathcal{E}}\right)\left({ }_{\mathcal{E}} I_{\mathcal{V}}\right)=P^{T} A^{T} P .
$$

Hence by the transpose product rule we have

$$
\begin{aligned}
\left(\nu T_{\mathcal{V}}\right)^{T} & =\left(P^{T} A P\right)^{T} \\
& =P^{T} A^{T} P^{T T} \\
& =P^{T} A^{T} P=\mathcal{V} S_{\mathcal{V}}
\end{aligned}
$$

as required.

