Solution (\#1165) Let \mathbf{v} and \mathbf{w} be independent vectors in \mathbb{R}^{2}. By rotating our axes, if necessary, we can assume that $\mathbf{v}=(a, 0)$ where $a>0$ and that $\mathbf{w}=(c, d)$; the independence of \mathbf{v} and \mathbf{w} means that $d \neq 0$. If we write $\mathbf{r}(t)=(x(t), y(t))$ then we have

$$
x(t)=a \cos t+c \sin t, \quad y(t)=d \sin t
$$

So

$$
\cos t=\frac{d x-c y}{a d} ; \quad \sin t=\frac{y}{d} .
$$

As $\cos ^{2} t+\sin ^{2} t=1$ then we see that our conic has equation

$$
\left(\frac{d x-c y}{a d}\right)^{2}+\left(\frac{y}{d}\right)^{2}=1
$$

which rearranges to

$$
d^{2} x^{2}-2 c d x y+\left(c^{2}+a^{2}\right) y^{2}=a^{2} d^{2}
$$

Note - in the notation of Theorem 4.53 - that

$$
B^{2}-4 A C=4 c^{2} d^{2}-4 d^{2}\left(a^{2}+c^{2}\right)=-4 d^{2} a^{2}<0
$$

so that the curve is an ellipse, single point or empty set. As it is clearly neither of the last two cases the curve is an ellipse.

