Solution (#1165) Let v and w be independent vectors in R2. By rotating our axes, if necessary, we can assume
that v = (a,0) where a > 0 and that w = (c,d); the independence of v and w means that d # 0. If we write

r(t) = (z(t),y(t)) then we have
z(t) = acost + csint, y(t) = dsint.

So dr —cy.
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As cos?t +sin?t = 1 then we see that our conic has equation
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d?*z? — 2cdzy + (c2 + a2) y? = a%d>.
Note — in the notation of Theorem 4.53 — that
B? —4AC = 4c2d* — 4d*(a® + ) = —4d*a® < 0,

so that the curve is an ellipse, single point or empty set. As it is clearly neither of the last two cases the curve is an
ellipse.
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which rearranges to



