Solution (\#1168) Consider the conic C with polar equation

$$
r=\frac{k e}{1+e \cos \theta} .
$$

A straight line L through the focus F (which is the origin) is represented as two half lines $\theta=\alpha$ and $\theta=\pi-\alpha$, so that A and B have polar co-ordinates

$$
A: r=\frac{k e}{1+e \cos \alpha}, \quad \theta=\alpha, \quad A: r=\frac{k e}{1+e \cos (\pi-\alpha)}=\frac{k e}{1-e \cos \alpha}, \quad \theta=-\alpha .
$$

Hence

$$
\frac{1}{|A F|}+\frac{1}{|B F|}=\left(\frac{1+e \cos \alpha}{k e}\right)+\left(\frac{1-e \cos \alpha}{k e}\right)=\frac{2}{k e}
$$

is independent of α and so of the choice of line L.
For the parabola $y^{2}=4 a x$ the focus is $F=(a, 0)$ and the vertical line $x=a$ meets the parabola at $(a, \pm 2 a)$. Hence

$$
\frac{1}{|A F|}+\frac{1}{|B F|}=\frac{1}{2 a}+\frac{1}{2 a}=\frac{1}{a} .
$$

