Solution (\#1188) Assume that \mathbf{a} and \mathbf{b} are non-zero, as clearly the equation has no solutions if either is zero. We may choose co-ordinates so that

$$
\mathbf{a}=(1,0,0) \quad \text { and } \quad \mathbf{b}=(b \cos \theta, b \sin \theta, 0)
$$

where $0 \leqslant \theta \leqslant \pi$. Then

$$
\begin{aligned}
\mathbf{r} \wedge \mathbf{a} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
x & y & z \\
1 & 0 & 0
\end{array}\right|=(0, z,-y) \\
\mathbf{r} \wedge \mathbf{b} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
x & y & z \\
b \cos \theta & b \sin \theta & 0
\end{array}\right|=b(-z \sin \theta,-z \cos \theta, x \sin \theta-y \cos \theta)
\end{aligned}
$$

So

$$
(\mathbf{r} \wedge \mathbf{a}) \cdot(\mathbf{r} \wedge \mathbf{b})=b\left(-z^{2} \cos \theta-x y \sin \theta+y^{2} \cos \theta\right)
$$

We can then rewrite $(\mathbf{r} \wedge \mathbf{a}) \cdot(\mathbf{r} \wedge \mathbf{b})=1$ as

$$
(x, y, z)\left(\begin{array}{ccc}
0 & -\sin \theta & 0 \\
-\sin \theta & 2 \cos \theta & 0 \\
0 & 0 & -2 \cos \theta
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\frac{2}{b}
$$

The characteristic polynomial of this matrix is

$$
\begin{aligned}
& \left|\begin{array}{ccc}
x & \sin \theta & 0 \\
\sin \theta & x-2 \cos \theta & 0 \\
0 & 0 & x+2 \cos \theta
\end{array}\right| \\
= & (x+2 \cos \theta)\left(x^{2}-2 x \cos \theta-\sin ^{2} \theta\right) \\
= & (x+2 \cos \theta)(x-1-\cos \theta)(x+1-\cos \theta) .
\end{aligned}
$$

By the spectral theorem we can make an orthonormal change of co-ordinates so that the given equation becomes

$$
\begin{equation*}
(-2 \cos \theta) X^{2}+(1+\cos \theta) Y^{2}+(\cos \theta-1) Z^{2}=\frac{2}{b} \tag{11.8}
\end{equation*}
$$

We have several cases to consider (i) $\cos \theta=0$, (ii) $\cos \theta=-1$, (iii) $\cos \theta=1$, (iv) $0<\cos \theta<1$, (v) $-1<\cos \theta<0$. In cases (i), (ii), (iii) we have the equations

$$
Y^{2}-Z^{2}=2 / b, \quad 2 X^{2}-2 Z^{2}=2 / b, \quad-2 X^{2}+2 Y^{2}=2 / b
$$

each of which is a hyperbolic cylinder. In case (iv) two of the coefficients in (11.8) are negative, one positive, and so we have a hyperboloid of two sheets. In case (v) two of the coefficients are positive and one is negative so that we have a hyperboloid of one sheet.

Thus the equation $(\mathbf{r} \wedge \mathbf{a}) \cdot(\mathbf{r} \wedge \mathbf{b})=1$ defines a hyperboloid of two sheets when $0<\cos \theta<1$. As $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$ then this inequality is equivalent to

$$
0<\mathbf{a} \cdot \mathbf{b}<|\mathbf{a}||\mathbf{b}| .
$$

