Solution (#1204) Let M be a complex $n \times n$ matrix M such that $M = \overline{M}^T$.

(i) Firstly we show that the roots of $c_M(x)$ are real in a similar fashion to Proposition 4.54. Let λ be a root of $c_M(x)$. Then there is a non-zero complex vector \mathbf{v} in \mathbb{C}^n such that $M\mathbf{v} = \lambda \mathbf{v}$. Applying conjugation and the transpose to this equation we have

$$\overline{M}\overline{\mathbf{v}} = \overline{\lambda}\overline{\mathbf{v}} \implies M^T\overline{\mathbf{v}} = \overline{\lambda}\overline{\mathbf{v}} \implies \overline{\mathbf{v}}^T M = \overline{\lambda}\overline{\mathbf{v}}^T.$$

We then have

$$\bar{\lambda} \bar{\mathbf{v}}^T \mathbf{v} = \bar{\mathbf{v}}^T M \mathbf{v} = \bar{\mathbf{v}}^T \lambda \mathbf{v} = \lambda \bar{\mathbf{v}}^T \mathbf{v}$$

Now for any non-zero *complex* vector $\mathbf{v} = (v_1, v_2, \dots, v_n)^T$ we have

$$\bar{\mathbf{v}}^T \mathbf{v} = \bar{\mathbf{v}} \cdot \mathbf{v} = \overline{v_1} v_1 + \dots + \overline{v_n} v_n = |v_1|^2 + \dots + |v_n|^2 > 0.$$

As $(\bar{\lambda} - \lambda)\bar{\mathbf{v}}^T \mathbf{v} = 0$ then $\lambda = \bar{\lambda}$ and so λ is real.

(ii) As argued in Proposition 4.54(b) it also follows that when $M\mathbf{v} = \lambda \mathbf{v}$ and $M\mathbf{w} = \mu \mathbf{w}$ where $\lambda \neq \mu$ are distinct reals, we have

$$\lambda \bar{\mathbf{v}}^T \mathbf{w} = (\overline{\lambda \mathbf{v}})^T \mathbf{w} = (\overline{M \mathbf{v}})^T \mathbf{w} = \bar{\mathbf{v}}^T \overline{M}^T \mathbf{w} = \bar{\mathbf{v}}^T M \mathbf{w} = \bar{\mathbf{v}}^T \mu \mathbf{w} = \mu \bar{\mathbf{v}}^T \mathbf{w}.$$

As $\lambda \neq \mu$ then $\mathbf{\bar{v}}^T \mathbf{w} = 0$.

(iii) As in the proof of the spectral theorem we shall prove the result by strong induction on n. When n = 1 there is nothing to prove as all 1×1 matrices are diagonal and so we can simply take $U = I_1$.

Suppose now that the result holds for $r \times r$ Hermitian matrices where $1 \leq r < n$. By the fundamental theorem of algebra, the characteristic polynomial c_M has a root λ in \mathbb{C} , which by the above is real. Let X denote the λ -eigenspace, that is

$$X = \{ \mathbf{v} \in \mathbb{C}_n : M\mathbf{v} = \lambda \mathbf{v} \}$$

Then X is a subspace as it is $\operatorname{Null}(M - \lambda I)$ and has an orthonormal basis $\mathbf{v}_1, \ldots \mathbf{v}_m$ which we may extend to an orthonormal basis $\mathbf{v}_1, \ldots \mathbf{v}_n$ of \mathbb{C}_n . (All this is in the sense of the complex inner product $\bar{\mathbf{v}}^T \mathbf{w}$ of two vectors \mathbf{v} and \mathbf{w} in \mathbb{C}_n .

Let $U = (\mathbf{v}_1 | \dots | \mathbf{v}_n)$; then U is unitary as $\overline{U}^T U = I_n$ is equivalent to the complex orthonormality of the columns. Then

$$\left[\overline{U}^T M U\right]_{ij} = \overline{\mathbf{v}_i}^T M \mathbf{v}_j$$

Note that $M\mathbf{v}_i = \lambda \mathbf{v}_i$ for $1 \leq i \leq m$. Also if $1 \leq i \leq m$ and $m < j, k \leq n$ we have that

$$\overline{\mathbf{v}_{i}}^{T}M\mathbf{v}_{j} = \overline{\mathbf{v}_{i}}^{T}\overline{M}^{T}\mathbf{v}_{j} = (\overline{M}\mathbf{v}_{i})^{T}\mathbf{v}_{j} = \lambda\overline{\mathbf{v}_{i}}^{T}\mathbf{v}_{j} = 0;$$

$$\overline{\mathbf{v}_{k}}^{T}(M\mathbf{v}_{j}) = \overline{\mathbf{v}_{k}}^{T}\overline{M}^{T}\mathbf{v}_{j} = (\overline{M}\mathbf{v}_{k})^{T}\mathbf{v}_{j} = \overline{(\overline{\mathbf{v}_{j}}^{T}M\mathbf{v}_{k})}^{T}$$

so that $\left[\overline{U}^{T}MU\right]_{ij} = 0$ and $\left[\overline{U}^{T}MU\right]_{kj} = \overline{\left[\overline{U}^{T}MU\right]_{jk}}$. This means that
 $\overline{U}^{T}MU = \operatorname{diag}(\lambda I_{m}, N)$

where N is a Hermitian $(n-m) \times (n-m)$ matrix. By our inductive hypothesis, there is a unitary $(n-m) \times (n-m)$ matrix V such that $\overline{V}^T NV$ is diagonal. If we set $W = \text{diag}(I_m, V)$ then W is unitary, UW is unitary and

$$(\overline{UW})^T M(UW) = \overline{W}^T \overline{U}^T M UW = \operatorname{diag}\left(I_m, \overline{V}^T\right) \operatorname{diag}\left(\lambda I_m, N\right) \operatorname{diag}\left(I_m, V\right) = \operatorname{diag}\left(\lambda I_m, \overline{V}^T N V\right)$$

is diagonal. This concludes the proof by induction.

Say that X is skew-symmetric and set M = iX. Then

$$\overline{M}^{T} = (-iX)^{T} = -iX^{T} = -i(-X) = iX = M$$

and so M is Hermitian. By the above proof $c_M(x)$ has real roots. The roots $c_X(x)$ are $\frac{1}{i}$ times the roots of $c_M(x)$ and so are purely imaginary.