Solution (\#1204) Let M be a complex $n \times n$ matrix M such that $M=\bar{M}^{T}$.
(i) Firstly we show that the roots of $c_{M}(x)$ are real in a similar fashion to Proposition 4.54. Let λ be a root of $c_{M}(x)$. Then there is a non-zero complex vector \mathbf{v} in \mathbb{C}^{n} such that $M \mathbf{v}=\lambda \mathbf{v}$. Applying conjugation and the transpose to this equation we have

$$
\bar{M} \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}} \quad \Longrightarrow \quad M^{T} \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}} \quad \Longrightarrow \quad \overline{\mathbf{v}}^{T} M=\bar{\lambda} \overline{\mathbf{v}}^{T}
$$

We then have

$$
\bar{\lambda} \overline{\mathbf{v}}^{T} \mathbf{v}=\overline{\mathbf{v}}^{T} M \mathbf{v}=\overline{\mathbf{v}}^{T} \lambda \mathbf{v}=\lambda \overline{\mathbf{v}}^{T} \mathbf{v}
$$

Now for any non-zero complex vector $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)^{T}$ we have

$$
\overline{\mathbf{v}}^{T} \mathbf{v}=\overline{\mathbf{v}} \cdot \mathbf{v}=\overline{v_{1}} v_{1}+\cdots+\overline{v_{n}} v_{n}=\left|v_{1}\right|^{2}+\cdots+\left|v_{n}\right|^{2}>0
$$

As $(\bar{\lambda}-\lambda) \overline{\mathbf{v}}^{T} \mathbf{v}=0$ then $\lambda=\bar{\lambda}$ and so λ is real.
(ii) As argued in Proposition 4.54(b) it also follows that when $M \mathbf{v}=\lambda \mathbf{v}$ and $M \mathbf{w}=\mu \mathbf{w}$ where $\lambda \neq \mu$ are distinct reals, we have

$$
\lambda \overline{\mathbf{v}}^{T} \mathbf{w}=(\overline{\lambda \mathbf{v}})^{T} \mathbf{w}=(\overline{M \mathbf{v}})^{T} \mathbf{w}=\overline{\mathbf{v}}^{T} \bar{M}^{T} \mathbf{w}=\overline{\mathbf{v}}^{T} M \mathbf{w}=\overline{\mathbf{v}}^{T} \mu \mathbf{w}=\mu \overline{\mathbf{v}}^{T} \mathbf{w}
$$

As $\lambda \neq \mu$ then $\overline{\mathbf{v}}^{T} \mathbf{w}=0$.
(iii) As in the proof of the spectral theorem we shall prove the result by strong induction on n. When $n=1$ there is nothing to prove as all 1×1 matrices are diagonal and so we can simply take $U=I_{1}$.

Suppose now that the result holds for $r \times r$ Hermitian matrices where $1 \leqslant r<n$. By the fundamental theorem of algebra, the characteristic polynomial c_{M} has a root λ in \mathbb{C}, which by the above is real. Let X denote the λ-eigenspace, that is

$$
X=\left\{\mathbf{v} \in \mathbb{C}_{n}: M \mathbf{v}=\lambda \mathbf{v}\right\}
$$

Then X is a subspace as it is $\operatorname{Null}(M-\lambda I)$ and has an orthonormal basis $\mathbf{v}_{1}, \ldots \mathbf{v}_{m}$ which we may extend to an orthonormal basis $\mathbf{v}_{1}, \ldots \mathbf{v}_{n}$ of \mathbb{C}_{n}. (All this is in the sense of the complex inner product $\overline{\mathbf{v}}^{T} \mathbf{w}$ of two vectors \mathbf{v} and \mathbf{w} in \mathbb{C}_{n}.

Let $U=\left(\mathbf{v}_{1}|\ldots| \mathbf{v}_{n}\right)$; then U is unitary as $\bar{U}^{T} U=I_{n}$ is equivalent to the complex orthonormality of the columns. Then

$$
\left[\bar{U}^{T} M U\right]_{i j}={\overline{\mathbf{v}_{i}}}^{T} M \mathbf{v}_{j}
$$

Note that $M \mathbf{v}_{i}=\lambda \mathbf{v}_{i}$ for $1 \leqslant i \leqslant m$. Also if $1 \leqslant i \leqslant m$ and $m<j, k \leqslant n$ we have that

$$
\begin{aligned}
\overline{\mathbf{v}}_{i}^{T} M \mathbf{v}_{j} & =\overline{\mathbf{v}}_{i}^{T} \bar{M}^{T} \mathbf{v}_{j}=\left(\overline{M \mathbf{v}_{i}}\right)^{T} \mathbf{v}_{j}=\lambda \overline{\mathbf{v}}_{i}^{T} \mathbf{v}_{j}=0 ; \\
{\overline{\mathbf{v}_{k}}}^{T}\left(M \mathbf{v}_{j}\right) & ={\overline{\mathbf{v}_{k}}}^{T} \bar{M}^{T} \mathbf{v}_{j}=\left(\overline{M \mathbf{v}_{k}}\right)^{T} \mathbf{v}_{j}={\left.\overline{\left(\overline{\mathbf{v}}_{j}\right.}{ }^{T} M \mathbf{v}_{k}\right)}^{T}
\end{aligned}
$$

so that $\left[\bar{U}^{T} M U\right]_{i j}=0$ and $\left[\bar{U}^{T} M U\right]_{k j}=\overline{\left[\bar{U}^{T} M U\right]_{j k}}$. This means that

$$
\bar{U}^{T} M U=\operatorname{diag}\left(\lambda I_{m}, N\right)
$$

where N is a Hermitian $(n-m) \times(n-m)$ matrix. By our inductive hypothesis, there is a unitary $(n-m) \times(n-m)$ matrix V such that $\bar{V}^{T} N V$ is diagonal. If we set $W=\operatorname{diag}\left(I_{m}, V\right)$ then W is unitary, $U W$ is unitary and

$$
(\overline{U W})^{T} M(U W)=\bar{W}^{T} \bar{U}^{T} M U W=\operatorname{diag}\left(I_{m}, \bar{V}^{T}\right) \operatorname{diag}\left(\lambda I_{m}, N\right) \operatorname{diag}\left(I_{m}, V\right)=\operatorname{diag}\left(\lambda I_{m}, \bar{V}^{T} N V\right)
$$

is diagonal. This concludes the proof by induction.
Say that X is skew-symmetric and set $M=i X$. Then

$$
\bar{M}^{T}=(-i X)^{T}=-i X^{T}=-i(-X)=i X=M
$$

and so M is Hermitian. By the above proof $c_{M}(x)$ has real roots. The roots $c_{X}(x)$ are $\frac{1}{i}$ times the roots of $c_{M}(x)$ and so are purely imaginary.

