Solution (\#1220) We have

$$
\cos a=\sin b \cos \alpha \sin c+\cos b \cos c .
$$

If we are able to employ the approximations $\cos x \approx 1-x^{2} / 2, \sin x \approx x$ for $x=a, b, c$ then we have

$$
1-\frac{a^{2}}{2}=b c \cos \alpha+\left(1-\frac{b^{2}}{2}\right)\left(1-\frac{c^{2}}{2}\right)
$$

Ignoring the fourth order term $b^{2} c^{2}$ we then have

$$
1-\frac{a^{2}}{2}=b c \cos \alpha+1-\frac{b^{2}}{2}-\frac{c^{2}}{2}
$$

which rearranges to the usual

$$
a^{2}=b^{2}+c^{2}-2 b c \cos \alpha
$$

Likewise the spherical sine rule states

$$
\frac{\sin \alpha}{\sin a}=\frac{\sin \beta}{\sin b}=\frac{\sin \gamma}{\sin c}
$$

If the triangle is small enough that we can employ the approximations $\sin x \approx x$ for $x=a, b, c$ then we obtain the usual sine rule

$$
\frac{\sin \alpha}{a}=\frac{\sin \beta}{b}=\frac{\sin \gamma}{c} .
$$

