Solution (\#1226) Given a quaternion $Q=a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k}$ we write $\bar{Q}=a-b \mathbf{i}-c \mathbf{j}-d \mathbf{k}$ and set $|Q|^{2}=Q \bar{Q}$.
(i) Let $q=b \mathbf{i}+c \mathbf{j}+d \mathbf{k}$. Note that

$$
\begin{aligned}
q^{2} & =(b \mathbf{i}+c \mathbf{j}+d \mathbf{k})(b \mathbf{i}+c \mathbf{j}+d \mathbf{k}) \\
& =b^{2} \mathbf{i} \mathbf{i}+c^{2} \mathbf{j} \mathbf{j}+d^{2} \mathbf{k} \mathbf{k}+b c(\mathbf{i} \mathbf{j}+\mathbf{j} \mathbf{i})+b d(\mathbf{i} \mathbf{k}+\mathbf{k i})+c d(\mathbf{j} \mathbf{k}+\mathbf{k} \mathbf{j}) \\
& =-b^{2}-c^{2}-d^{2}
\end{aligned}
$$

Let

$$
H=\frac{q}{\sqrt{b^{2}+c^{2}+d^{2}}}
$$

so that $H^{2}=-1$. Then

$$
Q=a+\sqrt{b^{2}+c^{2}+d^{2}} H
$$

If we set $r=|Q|=\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}$, then we can write

$$
Q=r(\cos \theta+H \sin \theta)
$$

for some θ as

$$
\left(\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}}\right)^{2}+\left(\frac{\sqrt{b^{2}+c^{2}+d^{2}}}{\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}}\right)^{2}=1 .
$$

(ii) If $P_{1}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and $P_{2}=X \mathbf{i}+Y \mathbf{j}+Z \mathbf{k}$ then

$$
\begin{aligned}
P_{1} P_{2} & =\left(x X \mathbf{i}^{2}+y Y \mathbf{j}^{2}+z Z \mathbf{k}^{2}\right)+(x Y \mathbf{i} \mathbf{j}+y Z \mathbf{j} \mathbf{k}+z X \mathbf{k i})+(y X \mathbf{j} \mathbf{i}+z Y \mathbf{k} \mathbf{j}+x Z \mathbf{i k}) \\
& =-(x X+y Y+z Z)+(y Z-z Y) \mathbf{i}+(z X-x Z) \mathbf{j}+(x Y-y X) \mathbf{k} \\
& =-P_{1} \cdot P_{2}+P_{1} \wedge P_{2}
\end{aligned}
$$

(iii) Let $Q=\sqrt{3} / 2+(\mathbf{i}+\mathbf{j}+\mathbf{k}) /(2 \sqrt{3})$ and $P=(\mathbf{i}+\mathbf{j}+\mathbf{k}) / \sqrt{3}$. Then

$$
|Q|^{2}=\frac{3}{4}+\frac{1}{12}+\frac{1}{12}+\frac{1}{12}=1
$$

Further by (ii) we have

$$
\begin{aligned}
Q P \bar{Q} & =\left(\frac{\sqrt{3}}{2}+\frac{P}{2}\right) P\left(\frac{\sqrt{3}}{2}-\frac{P}{2}\right)=\left(\frac{\sqrt{3}}{2} P-\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}-\frac{P}{2}\right) \\
& =\left(\frac{3}{4}+\frac{1}{4}\right) P+\left(\frac{-\sqrt{3}}{4}+\frac{\sqrt{3}}{4}\right)=P .
\end{aligned}
$$

If R is a unit vector perpendicular to P then

$$
\begin{aligned}
Q R \bar{Q} & =\left(\frac{\sqrt{3}}{2}+\frac{P}{2}\right) R\left(\frac{\sqrt{3}}{2}-\frac{P}{2}\right) \\
& =\frac{1}{4}(\sqrt{3}+P) R(\sqrt{3}-P) \\
& =\frac{1}{4}(\sqrt{3} R+P \wedge R)(\sqrt{3}-P) \\
& =\frac{1}{4}(3 R+\sqrt{3} P \wedge R-\sqrt{3} R \wedge P-(P \wedge R) \wedge P) \\
& =\frac{1}{2} R+\frac{\sqrt{3}}{2} P \wedge R \quad[\operatorname{as}(P \wedge R) \wedge P=R] \\
& =\left(\cos \frac{\pi}{3}\right) R+\left(\sin \frac{\pi}{3}\right) P \wedge R .
\end{aligned}
$$

Note $P, R, R \wedge P$ form an orthonormal basis. We see from the above calculations that T fixes the line through the origin parallel to P, which has equation $x=y=z$, and rotates the plane generated by R and $R \wedge P$ by $\pi / 3$.

