Solution (\#1230) Let $X=\langle(0,2,1,2),(1,2,2,3)\rangle$. A vector $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is in X^{\perp} if it solves the system

$$
\left(\begin{array}{llll|l}
0 & 2 & 1 & 2 & 0 \\
1 & 2 & 2 & 3 & 0
\end{array}\right)
$$

Row-reducing the system, we arrive at

$$
\left(\begin{array}{cccc|c}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & \frac{1}{2} & 1 & 0
\end{array}\right)
$$

which has general solution

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(-\alpha-\beta,-\frac{1}{2} \alpha-\beta, \alpha, \beta\right)=\frac{1}{2} \alpha(-2,-1,2,0)+\beta(-1,-1,0,1) .
$$

So $(-2,-1,2,0)$ and $(-1,-1,0,1)$ form a basis for X^{\perp}.

