Solution (#1232) Let X be a subspace of \mathbb{R}^n . Say that $\mathbf{v} = \mathbf{x} + \mathbf{y}$ is the decomposition of \mathbf{v} into \mathbf{x} in X and \mathbf{y} in X^{\perp} .

(i) Let \mathbf{x}' be any other point of X. Then

 $|\mathbf{v} - \mathbf{x}'|^2 = |\mathbf{x} - \mathbf{x}' + \mathbf{y}|^2 = |\mathbf{x} - \mathbf{x}'|^2 + |\mathbf{y}|^2 \ge |\mathbf{y}|^2$

as $\mathbf{x} - \mathbf{x}'$ is perpendicular to \mathbf{y} . We can see then that $|\mathbf{v} - \mathbf{x}'|$ is minimized when $\mathbf{x}' = \mathbf{x}$. (ii) Say now that

$$\mathbf{v}_1 = \mathbf{x}_1 + \mathbf{y}_1$$
 and $\mathbf{v}_2 = \mathbf{x}_2 + \mathbf{y}_2$

are two such decompositions and also α_1, α_2 are real numbers. Then

 $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 = (\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2) + (\alpha_1 \mathbf{y}_1 + \alpha_2 \mathbf{y}_2).$

As X and X^{\perp} are both subspaces then $\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2$ is in X and $\alpha_1 \mathbf{y}_1 + \alpha_2 \mathbf{y}_2$ is in X^{\perp} . So

$$P(\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2) = \alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2$$

and we see that P is linear.

Finally the image of P is in X by definition, and if \mathbf{x} is in X then

$$\mathbf{x} = \mathbf{x} + \mathbf{0}$$

is its unique decomposition and so $P\mathbf{x} = \mathbf{x}$ by definition. If \mathbf{y} is in X^{\perp} then

$\mathbf{y} = \mathbf{0} + \mathbf{y}$

is the unique decomposition and so $P\mathbf{y} = \mathbf{0}$. Conversely if $P\mathbf{v} = 0$ then it follows that

$$\mathbf{v} = \mathbf{0} + \mathbf{v}$$

is the decomposition of \mathbf{v} and hence \mathbf{v} is in X^{\perp} .