Solution (\#1236) Recall by the Cayley-Hamilton theorem that $m_{M}(x)$ divides $c_{M}(x)$ for any square matrix M Let

$$
A=\left(\begin{array}{ccc}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), \quad B=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \quad C=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right)
$$

Then $c_{A}(x)=x^{3}$ and so $m_{A}(x)$ could be x, x^{2} or x^{3}. As

$$
A^{2}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \neq 0
$$

then $m_{A}(x)=x^{3}=c_{A}(x)$.
Note that

$$
c_{B}(x)=\left|\begin{array}{ccc}
x & -1 & 0 \\
0 & x & -1 \\
-1 & 0 & x
\end{array}\right|=x^{3}-1
$$

We can also see that

$$
I=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad B=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \quad B^{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

are linearly independent (by focusing on the first row) and so $m_{B}(x)=x^{3}-1=c_{B}(x)$.
Finally

$$
c_{C}(x)=\left|\begin{array}{ccc}
x-2 & 0 & 0 \\
0 & x-2 & -1 \\
0 & 0 & x-2
\end{array}\right|=(x-2)^{3} .
$$

So $m_{C}(x)$ could be $x-2,(x-2)^{2}$ or $(x-2)^{3}$. Now $C-2 I \neq 0$ but

$$
(C-2 I)^{2}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)^{2}=0_{33}
$$

and hence $m_{C}(x)=(x-2)^{2} \neq c_{C}(x)$. Consequently there is no C-cyclic vector by $\# 1235$.
To find a cyclic vector for A we note

$$
\mathbf{e}_{3}^{T}, \quad A \mathbf{e}_{3}^{T}=\mathbf{e}_{1}^{T}+\mathbf{e}_{2}^{T}, \quad A^{2} \mathbf{e}_{3}^{T}=\mathbf{e}_{1}^{T}
$$

is a basis.
To find a cyclic vector for B we note

$$
\mathbf{e}_{1}^{T}, \quad B \mathbf{e}_{1}^{T}=\mathbf{e}_{3}^{T}, \quad B^{2} \mathbf{e}_{1}^{T}=\mathbf{e}_{2}^{T}
$$

is a basis.

