Solution (\#1248) (i) The co-ordinates of two observers O and O^{\prime} are related by

$$
\binom{c t}{x}=\gamma(u)\left(\begin{array}{cc}
1 & u / c \\
u / c & 1
\end{array}\right)\binom{c t^{\prime}}{x^{\prime}}
$$

where $|u|<c$.
The events $\left(c t^{\prime}, x^{\prime}\right)=(0,0)$ and $\left(c t^{\prime}, x^{\prime}\right)=(0,1)$ are perceived as simultaneous by O^{\prime}. However O assigns times

$$
c t=0 \quad \text { and } \quad c t=\gamma(u) u / c
$$

which are not equal and so the events not perceived as simultaneous.
(ii) Say that O^{\prime} is at $E_{1}=\left(c t_{1}^{\prime}, 0\right)$ and $E_{2}=\left(c t_{2}^{\prime}, 0\right)$ at two different events. Then O assigns these events t-coordinates of

$$
c t_{1}=\gamma(u) c t_{1}^{\prime}, \quad c t_{2}=\gamma(u) c t_{2}^{\prime}
$$

So the time difference as measure by O is

$$
t_{2}-t_{1}=\gamma(u)\left(t_{2}^{\prime}-t_{1}^{\prime}\right)
$$

Consequently, as $\gamma(u)>1$ then O measures a greater time having passed than O^{\prime} does. This phenomenon is known as time dilation.
(iii) Two twins O and O^{\prime} meet at a common origin $(c t, x)=\left(c t^{\prime}, x^{\prime}\right)=(0,0)$ on Earth. Twin O^{\prime}, an astronaut, then travels away from O at speed v to a planet distance d away. The time taken to do this, measured by O is d / v but, because of time dilation, the time measured by O^{\prime} is

$$
\frac{d}{v \gamma(v)}
$$

The astronaut perceives the same time $d /(v \gamma(v))$ on the return journey which O again measures as d / v. So the difference in ages when the twin returns is

$$
\frac{2 d}{v}-\frac{2 d}{v \gamma(v)}=\frac{2 d}{v}\left(1-\sqrt{1-v^{2} / c^{2}}\right)
$$

which will be negligible unless v is comparable to the speed of light. By the binomial theorem (for an arbitrary exponent)

$$
\sqrt{1-\frac{v^{2}}{c^{2}}}=1+\frac{1}{2}\left(-\frac{v^{2}}{c^{2}}\right)+\frac{1}{2} \times-\frac{1}{2}\left(-\frac{v^{2}}{c^{2}}\right)^{2}+\cdots \approx 1-\frac{v^{2}}{2 c^{2}}
$$

The above therefore is approximately

$$
\frac{2 d}{v}\left(1-\sqrt{1-v^{2} / c^{2}}\right)=\frac{2 d}{v}\left(1-1+\frac{v^{2}}{2 c^{2}}\right)=\frac{d v}{c^{2}}
$$

(iv) Observer O^{\prime} has a rod of length L with its ends having co-ordinates $\left(c t^{\prime}, 0\right)$ and $\left(c t^{\prime}, L\right)$. So O perceives these events as two non-simultaneous events

$$
\begin{aligned}
\gamma(u)\left(\begin{array}{cc}
1 & u / c \\
u / c & 1
\end{array}\right)\binom{c t^{\prime}}{0} & =\gamma(u)\binom{c t^{\prime}}{u t^{\prime}} \\
\gamma(u)\left(\begin{array}{cc}
1 & u / c \\
u / c & 1
\end{array}\right)\binom{c t^{\prime}}{L} & =\gamma(u)\binom{c t^{\prime}+u L / c}{u t^{\prime}+L} .
\end{aligned}
$$

Given that O measures distances between simultaneous events, then O measures the distance between two events that aren't simultaneous in the rod's frame say when $t^{\prime}=t_{1}^{\prime}$ and $t^{\prime}=t_{2}^{\prime}$. So we first need

$$
c t_{1}^{\prime}=c t_{2}^{\prime}+u L / c \quad \text { or } \quad t_{2}^{\prime}-t_{1}^{\prime}=-\frac{u L}{c^{2}}
$$

The length of the rod is then measured as

$$
\gamma(u)\left(u t_{2}^{\prime}+L-u t_{1}^{\prime}\right)=\gamma(u)\left(L+u\left(-\frac{u L}{c^{2}}\right)\right)=\gamma(u)\left(1-\frac{u^{2}}{c^{2}}\right) L=\frac{\gamma(u) L}{\gamma(u)^{2}}=\frac{L}{\gamma(u)}
$$

